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Summary. These lecture notes are mainly devoted to a K-theory proof of the Atiyah-

Singer index theorem. Some applications of the K-theory to noncommutative topology are

also given.

Introduction

Topological K-theory for locally compact spaces was introduced by Atiyah

and Singer in their proof of the index theorem for elliptic operators. During

the last two decades, topological K-theory and elliptic operators have become

important tools in topology. For instance, index theory for C∗-algebras was

used to compute the K-theory of many “noncommutative” spaces, leading

to the so called Baum-Connes conjecture. Also, G. Kasparov used K-theory

and K-homology for C∗-algebras to investigate the Novikov’s conjecture on

higher signatures for large classes of groups. With the emergence of A. Connes

non-commutative geometry, one can say that K-theory and elliptic theory for

complex algebras have become usual tools in topology.

The purpose of this course is to introduce the main ideas of the Atiyah-

Singer index theorem for elliptic operators. We also show how K-theory for

C∗-algebras can be used to study the leaf space of a foliation. We would like to

thank the referee for many suggestions making these notes more transparent.

1 Index of a Fredholm operator

1.1 Fredholm operators

Recall that an endomorphism T ∈ B(H) of a Hilbert space H is called com-

pact if it is a norm limit of finite rank endomorphisms of H or, equivalently, if
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the image T (B) of the unit ball B of H is compact. Let H1,H2 be two Hilbert

spaces and T : H1 −→ H2 be a linear continuous map. We say that T is Fred-

holm if there exists a continuous linear map S : H2 −→ H1 such that the

operators ST − I ∈ B(H1) and TS − I ∈ B(H2) are compact. For instance,

if the operator K ∈ B(H) is compact, T = I +K ∈ B(H) is Fredholm.

Exercise 1.1.1. Let K : [0, 1] × [0, 1] −→ lC be a continuous map. Show

that the bounded operator T defined on H = L2([0, 1], dx) by Tf(x) =
1∫
0

K(x, y)f(y)dy is compact. Is T a Fredholm operator?

Exercise 1.1.2. Let (e0, e1, ...) be the natural orthonormal basis of H =

l2( IN). Show that the unilateral shift S ∈ B(H) defined by Sen = en+1 is

Fredholm.

Let us give a characterization of Fredholm operators involving only the kernel

and the image of the operator.

Theorem 1.1.3. Let T : H1 −→ H2 be a bounded operator. The following

conditions are equivalent:

(i) T is Fredholm;

(ii) Ker(T ) is a finite dimensional subspace of H1 and Im(T ) is a closed

finite codimensional subspace of H2.

Proof (i) =⇒ (ii). If T is Fredholm, the restriction of the identity map

of H1 to Ker(T ) is compact since it is equal to the restriction of I − ST to

Ker(T ). It follows that the unit ball of Ker(T ) is compact and hence Ker(T )

is finite dimensional. On the other hand, since T ∗ is Fredholm, the subspace

Im(T )⊥ = Ker(T ∗) is also finite dimensional so that we only have to prove

that Im(T ) is closed. Let yn ∈ Im(T ) be a sequence converging to y ∈ H2,

and write yn = Txn with xn ∈ Ker(T )⊥. The sequence (xn) is bounded

because if not we could choose a subsequence (xnk
)k with ‖xnk

‖ −−−−→
k→+∞

+∞.

By compactnees of ST − I, we may assume in addition that

(ST − I)
(

xnk

‖xnk
‖

)
−−−−→
k→+∞

z ∈ H1.
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Since ST

(
xnk

‖xnk‖

)
=

S(ynk
)

‖xnk‖
−−−−→
k→+∞

0, we would get
xnk

‖xnk‖
−→ −z, a fact

which implies z ∈ Ker(T )⊥ and ‖z‖ = 1. On the other hand, we have

ynk

‖xnk
‖ = T

(
xnk

‖xnk
‖

)
−→ −T (z)

so that T (z) = 0. We thus would have z ∈ Ker(T ) ∩ Ker(T )⊥ = {0},
a fact which contradicts ‖z‖ = 1. The sequence (xn) is thus bounded. By

compactness of ST − I, we may choose a subsequence (xnk
)k such that

(ST − I)(xnk
) −−−−→
k→+∞

z ∈ H1.

It follows that xnk
−−−−→
k→+∞

Sy − z ∈ H1 and hence y = Tu with u = Sy − z.
This shows that Im(T ) is closed.

(ii) =⇒ (i) By the Hahn-Banach theorem, T|Ker(T )⊥ : Ker(T )⊥ −→ Im(T )

is an isomorphism. Let S1 : Im(T ) −→ Ker(T )⊥ be the inverse of T|Ker(T )⊥,

and consider the operator S which coincides with S1 on Im(T ), and which is

0 on Ker(T ∗). We have ST − I = −pKer(T ), TS− I = −pKer(T ∗), where pK

denotes the orthogonal projection on the closed subspace K, so that ST − I
and TS − I are finite rank operators. QED

In the sequel, we shall denote by Fred(H1,H2) the set of Fredholm operators

from H1 to H2. It is easy to see that Fred(H1,H2) is an open subset of

B(H1,H2) equipped with the norm topology.

1.2 Toeplitz operators

Toeplitz operators are good examples of “pseudodifferential” operators on S
1.

Let H = H2(S1) be the Hardy space, i.e. the subspace of L2(S1) generated by

the exponentials en(t) = ei2πnt(n = 0, 1, ...), and denote by P the orthogonal

projection onto H2(S1).

Definition 1.2.1. Let ϕ : S
1 −→ lC be a continuous map. We call Toeplitz

operator of symbol ϕ the bounded operator Tϕ ∈ B(H) defined by:

Tϕ(f) = P (ϕf), f ∈ H2(S1).

For instance, Te1 is the unilateral shift S and Te−1 its adjoint S∗.
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Proposition 1.2.2. Let ϕ : S
1 −→ lC be a non vanishing continuous map.

Then Tϕ is a Fredholm operator.

Proof. It suffices to prove that TϕTψ−Tϕψ is compact for any ϕ,ψ ∈ C(S1).

Indeed, for a non vanishing ϕ : S1 −→ lC, the inverse ψ = 1
ϕ is continuous

and the above assertion will imply that TϕTψ − I and TψTϕ− I are compact.

To show that TϕTψ − Tϕψ is compact for any ϕ,ψ ∈ C(S1) we may assume,

by using the Stone-Weierstrass theorem and the continuity of the map

ϕ ∈ C(S1) −→ Tϕ ∈ B(H),

that ϕ,ψ are trigonometric polynomials. By linearity, we are finally reduced

to prove that TenTem − Ten+m is compact for any n,m ∈ Z. But we have:

(TenTem − Ten+m)(ek) =

{
−en+m+k if −(n+m) ≤ k < −m
0 if not

so that TenTem −Ten+m is a finite rank operator, and hence is compact. QED

Exercise 1.2.3. Let ϕ : S
1 −→ lC be a continuous map such that Tϕ is

compact. Show that ϕ = 0.

1.3 The index of a Fredholm operator

Definition 1.3.1. Let T : H1 −→ H2 be a Fredholm operator. The integer:

Ind(T ) = dimKer(T )− codimKer(T ) = dimKer(T )− dimKer(T ∗) ∈ Z

is called the index of T .

The main property of the index is its homotopy invariance:

Proposition 1.3.2. For any norm continuous path t ∈ [0, 1] −→ Tt ∈
Fred(H1,H2) of Fredholm operators, we have Ind(T0) = Ind(T1).

The homotopy invariance of the index is a consequence of the continuity of

the map T −→ Ind(T ) on Fred(H1,H2). For a proof, see [15], theorem 2.3,

page 224. Let us give a consequence of this homotopy invariance:

Corollary 1.3.3. Let T1, T2 ∈ B(H) be two Fredholm operators. Then, T1T2

is a Fredholm operator such that Ind(T1T2) = Ind(T1) + Ind(T2).
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Proof. It is clear from the definition that T1T2 is Fredholm. For any t ∈

[0, π/2], set Ft =

(
T1 0

0 I

)(
cost sint

−sint cost

)(
I 0

0 T2

)(
cost −sint
sint cost

)
. We thus

define a homotopy of Fredholm operators between F0 =

(
T1 0

0 T2

)
and Fπ/2 =

(
T1T2 0

0 I

)
. By proposition 1.3.2., we get:

Ind(T1) + Ind(T2) = Ind(F0) = Ind(Fπ/2) = Ind(T1T2). QED

Exercise 1.3.4. Let F,K ∈ B(H1,H2). Assume that F is Fredholm and K

compact. Show that F +K is Fredholm and Ind(F +K) = Ind(F ).

1.3.5 Meaning of the index. Let T ∈ Fred(H1,H2). By the Hahn-Banach

theorem, T|Ker(T )⊥ : Ker(T )⊥ −→ Im(T ) is an isomorphism. If Ind(T ) = 0,

we can choose an isomorphism R : Ker(T ) −→ Im(T )⊥ and the operator T̃

equal to T on Ker(T )⊥ and to R on Ker(T ) is a finite rank perturbation of

T which is an isomorphism. Conversely, if there exists a finite rank operator

R such that T̃ = T + R is an isomorphism, then Ind(T ) = Ind(T̃ ) = 0 (cf.

exercise 1.3.4.). This shows that Ind(T ) is the obstruction to make T an iso-

morphism by a finite rank perturbation. Let us give another interpretation

of the index of a Fredholm operator. To avoid unnecessary technicalities, we

shall assume that H1 = H2 = H. Denote by Calk(H) = B(H)/K(H) the

quotient of the algebra B(H) by the closed ideal K(H) of compact opera-

tors on H. The Calkin algebra Calk(H) is a Banach∗-algebra1 with unit for

the quotient norm. Denote by π : B(H) −→ B(H)/K(H) = Calk(H) the

canonical projection. By definition, an operator T ∈ B(H) is Fredholm if

and only if π(T ) is invertible in Calk(H).The index of T is, by the preceding

discussion, the obstruction to lift π(T ) to some invertible element in B(H).

The following proposition shows that we can always choose an invertible lift

X ∈M2(B(H)) for the 2× 2 matrix

(
π(T ) 0

0 π(T )−1

)
∈M2(Calk(H)) with

coefficients in Calk(H), and that Ind(T ) can be interpreted as the formal

difference of the projections:

1 Recall that a Banach∗-algebra B is a Banach algebra with an involution x 7−→ x∗ such

that ‖x∗‖ = ‖x‖ for any x ∈ B. When B has a unit 1, we always ask that ‖1‖ = 1.
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X

(
1 0

0 0

)
X−1 ∈M2(I +K(H)) and

(
1 0

0 0

)
∈M2(I +K(H)).

Proposition 1.3.6. Let T ∈ B(H) be a Fredholm operator. Denote by S

the operator which is zero on Ker(T ∗) and which is equal on Im(T ) to the

inverse of the isomorphism T|Ker(T )⊥ : Ker(T )⊥ −→ Im(T ). Let e and f be

the orthogonal projections on Ker(T ) and Ker(T ∗).

(i) X =

(
T f

e S

)
is an invertible element in M2(B(H)) = B(H) ⊗M2( lC)

such that (π ⊗ I2)(X) =

(
π(T ) 0

0 π(T )−1

)
;

(ii) X

(
1 0

0 0

)
X−1 −

(
1 0

0 0

)
=

(
−f 0

0 e

)
, so that

Ind(T ) = Trace

(
X

(
1 0

0 0

)
X−1 −

(
1 0

0 0

))
.

Proof. (i) By direct calculation, we see that

(
S e

−f T

)
∈ M2(B(H)) is an

inverse for X. Since ST = 1 − e, we have π(S)π(T ) = 1 and hence π(S) =

π(T )−1. It follows that (π ⊗ I2)(X) =

(
π(T ) 0

0 π(T )−1

)
and (i) is proved.

(ii) We get by direct computation:

X

(
1 0

0 0

)
X−1 −

(
1 0

0 0

)
=

(
1− f 0

0 e

)
−
(

1 0

0 0

)
=

(
−f 0

0 e

)
. QED

Exercise 1.3.7. Let T ∈ B(H1,H2) and assume that there exists S ∈
B(H2,H1) and a positive integer n such that (ST − I)n and (TS − I)n are

trace class operators.

Show that T is Fredholm and prove that:

Ind(T ) = Trace((ST − I)n)− Trace((TS − I)n).

Let us now compute the index of a Toeplitz operator. To this end, recall

that the degree of a continuous map ϕ : S
1 −→ lC which does not vanish is
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by definition the degree 1
2πi

1∫
0

ψ′(t)
ψ(t) dt of any smooth function ψ : S

1 −→ lC

sufficiently close to ϕ.

Theorem 1.3.8. For any non vanishing continuous map ϕ : S
1 −→ lC, we

have:

Ind(Tϕ) = −deg(ϕ).

Proof. Set n = deg(ϕ). Since ϕ is homotopic to the map t ∈ S
1 −→ ϕ(t)

|ϕ(t)| ∈ S
1

whose degree is n, there exists by Hopf’s theorem a continuous homotopy

(ϕt)0≤t≤1 between ϕ0 = ϕ and ϕ1(s) = ei2πns such that ϕt : S
1 −→ lC is

a continuous invertible map for each t ∈ [0, 1]. Since the index of a Fred-

holm operator and the degree of a continuous invertible map are homotopy

invariants, we get:

Ind(Tϕ) = Ind(Tϕ1) = Ind(Ten) = n.Ind(Te1) = −n = −deg(ϕ),

and the proof is complete. QED

Exercise 1.3.9. Let T be the operator on l2(Z) defined by:

T (en) =

{
n√

1+n2
en−1 if n ≥ 0

n√
1+n2

en if n ≤ 0

where (en)n∈Z is the canonical orthonormal basis of l2(Z). Show that T is a

Fredholm operator of index equal to 1.

2 Elliptic operators on manifolds

Elliptic operators on manifolds give rise to Fredholm operators, whose ana-

lytical index can be computed from the principal symbol, which is a purely

topological data.

2.1 Pseudodifferential operators on IRn

Pseudodifferential operators of order m on IRn generalize differential opera-

tors. They are constructed from symbols of order m. In what follows, we shall

write as usually: Dα
x = ∂|α|

i|α|∂xα .
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Definition 2.1.1. Let m ∈ IR. A smooth matrix-valued function p = p(x, ξ)

on IRn× IRn is said to be a symbol of order m if there is, for any pair (α, β)

of multiindices, a constant Cα,β ≥ 0 such that:

|Dα
xD

β
ξ p(x, ξ)| ≤ Cα,β(1 + |ξ|)m−|β| for all x, ξ.

We shall denote by Sm the space of symbols of order m. Note that Sm ⊂ Sm′

if m ≤ m′. We shall say that a symbol p of order m has a formal development

p ∼
∞∑

j=1

pj with pj ∈ Smj if there exists, for each positive integer m, an integer

N such that p −
k∑

j=1

pj ∈ S−m for any k ≥ N . The following result (see for

instance [16], proposition 3.4, page 179) is very close to Borel’s result on

the existence of a smooth function having a given Taylor expansion at some

point:

Proposition 2.1.2. For any formal series
∞∑

j=1

pj with pj ∈ Smj and mj −→

−∞, there exists a symbol p of order m such that we have p ∼
∞∑

j=1

pj.

To any p ∈ Sm with values in Mk( lC), we associate a linear operator:

P = Op(p) : S( IRn)⊗ lCk −→ S( IRn)⊗ lCk

by the formula:

Pu(x) =
1

(2π)n/2

∫

Rn

ei<x,ξ>p(x, ξ)û(ξ)dξ.

Here, S( IRn) is the Schwartz space of IRn and û denotes the Fourier transform

of u ∈ S( IRn) ⊗ lCk. The fact that P defines a linear operator from the

Schwartz space S( IRn)⊗ lCk to itself is straightforward.

Definition 2.1.3. The operators of the form Op(p) with p ∈ Sm are called

pseudodifferential operators of order m on IRn.

The space of all pseudodifferential operators of order m will be denoted by

Ψm. Differential operators on IRn are examples of pseudodifferential opera-

tors. Indeed, consider the symbol p(x, ξ) =
∑

|α|≤m
Aα(x)ξα of order m, where
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m is a positive integer and the Aα(x) are smooth matrix valued functions on

IRn. Since Dα
xu(ξ)

b= ξαû(ξ), we have:

Op(p) =
∑

|α|≤m
Aα(x)Dα.

For s ∈ IR, denote by Hs( IRn) the Sobolev space of exponent s in IRn, i.e.

the completion of the Schwartz space S( IRn) for the Sobolev s-norm:

‖u‖s =

√∫
(1 + |ξ|)2s|û(ξ)|2dξ.

Theorem 2.1.4. For any p ∈ Sm with values in Mk( lC) and compact x-

support, the operator P = Op(p) has a continuous extension:

P : Hs+m( IRn)⊗ lCk −→ Hs( IRn)⊗ lCk.

For a proof of this theorem, see [16], proposition 3.2, page 178. Note that a

pseudodifferential operator can have an order −m < 0. Such an operator is

said to be smoothing of order m.

Definition 2.1.5. A linear map P : S( IRn) ⊗ lCk −→ S( IRn) ⊗ lCk that

extends to a bounded linear map P : Hs+m( IRn)⊗ lCk −→ Hs( IRn)⊗ lCk for

all s and m is called infinitely smoothing.

The space of all infinitely smoothing operators will be denoted by Ψ−∞. Since

we have a continuous inclusion Hs( IRn) ⊂ Cq( IRn) for any s > (n/2) + q

(Sobolev’s embedding theorem), the image Pu of any u ∈ Hs( IRn)⊗ lCk by an

infinitely smoothing operator P is a smooth function. Two pseudodifferential

operator P and P ′ will be called equivalent if P − P ′ ∈ Ψ−∞.

2.1.6 Kernel of a pseudodifferential operator. Any P = Op(p) ∈ Ψm
has a Schwartz (distribution) kernel KP (x, y) satisfying:

Pu(x) =< KP (x, .), u(.) >

for any smooth compactly supported function u. Note that KP is not a func-

tion on IRn× IRn in general. Its restriction to the complement of the diagonal
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of IRn × IRn is given by a smooth function, but it may have singularities on

the diagonal (see for instance the case of differential operators). Formally, we

have from the formula defining P = Op(p):

KP (x, y) =
1

(2π)n/2

∫

Rn

ei<x−y,ξ>p(x, ξ)dξ,

but we have to point out that this integral does not converge in general. For

m < −n, this integral makes sense and defines a continuous function KP on

IRn× IRn which is smooth outside the diagonal. In this case, P is an ordinary

integral operator. For m ≥ −n, we get from the above remark, by writing

P = P (1 +∆)−l(1 +∆)l where l is a positive integer such that m− 2l < −n:

Pu(x) =
∑

|α|≤2l

∫
Kα,P (x, y)Dαu(y)dy

where the Kα,P are continuous functions that are smooth outside the diago-

nal. We thus have, in the distributional sense:

KP (x, y) =
∑

|α|≤2l

(−1)|α|Dα
yKα,P (x, y).

Definition 2.1.7. Let P = Op(p) ∈ Ψm be a pseudodifferential operator on

IRn.

(i) We call P ε-local if we have:

supp(Pu) ⊂ {x ∈ IRn|dist(x, supp(u)) ≤ ε}

for any smooth compactly supported function u on IRn:

(ii) We say that P has support in a compact set K if we have:

supp(Pu) ⊂ K and (supp(u) ∩K = ∅) =⇒ Pu = 0

for any smooth compactly supported function u on IRn.

The following proposition summarizes classical results used to construct pseu-

dodifferential operators.

Theorem 2.1.8. (i) For any formal series

∞∑

j=1

pj with pj ∈ Smj and mj −→

−∞, there exists P = Op(p) ∈ Ψm1 , unique up to equivalence, such that
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p ∼
∞∑

j=1

pj;

(ii) Let a(x, y, ξ) be a smooth matrix-valued function on IRn× IRn× IRn with

compact x and y-support. Assume that there exists m ∈ IR and, for each

α, β, γ, a constant Cαβγ such that:

|Dα
xD

β
yD

γ
ξ a(x, y, ξ)| ≤ Cαβγ(1 + |ξ|)m−|γ|.

Then, the formula:

(Pu)(x) =
1

(2π)n

∫ ∫
ei<x−y,ξ>a(x, y, ξ)u(y)dydξ

defines a pseudodifferential operator P = Op(p) of order m whose symbol p

has the asymptotic development p ∼
∑

α

i|α|

α!
(Dα

ξD
α
y a)(x, x, ξ);

(iii) For any P = Op(p) ∈ Ψm whose symbol p has compact x-support and any

ε > 0, there exists an ε-local pseudodifferential operator Pε = Op(p) ∈ Ψm
such that P − Pε ∈ Ψ−∞.

For a proof, we refer to [16], chap. III, § 3.

Exercise 2.1.9. Let a be as in theorem 2.1.8 (ii), and assume in addition

that a(x, y, ξ) vanishes for all (x, y) in a neighbourhood of the diagonal. Show

that P = Op(p) is infinitely smoothing.

Exercise 2.1.10. Let P = Op(p) ∈ Ψm. Show that for any pair (ϕ,ψ)

of smooth real valued functions with compact support, the operator Q(u) =

ψP (ϕu) is also pseudodifferential of order m. Deduce that if U is an open

subset of IRn, we have for any u ∈ Hs( IRn):

u|U ∈ C∞ =⇒ Pu|U ∈ C∞.

The following theorem summarizes the main rules of symbolic calculus on

pseudodifferential operators.

Theorem 2.1.11. (i) Let P = Op(p) ∈ Ψ l and Q = Op(q) ∈ Ψm be pseu-

dodifferential operators. Then, the product R = PQ is a pseudodifferential

operator R = Op(r) ∈ Ψ l+m whose symbol r has the formal development:
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r ∼
∑

α

i|α|

α!
(Dα

ξ p)(D
α
x q);

(ii) Let P = Op(p) ∈ Ψm be a pseudodifferential operator. Then, the formal

adjoint P ∗ is a pseudodifferential operator P ∗ = Op(p∗) ∈ Ψm whose symbol

p∗ has the formal development:

p∗ ∼
∑

α

i|α|

α!
Dα
ξD

α
xp

t;

(iii) Let P = Op(p) ∈ Ψm be a pseudodifferential operator. Let ϕ : U −→ V

be a C∞-diffeomorphism from an open subset U of IRn onto an open subset

V = ϕ(U) ⊂ IRn. For any pair (α, β) of smooth functions with compact

support in U such that β = 1 in a neighbourhood of supp(α), the operator:

Q(u)(x) = (αPβ)(u ◦ ϕ)(ϕ−1(x))

is a pseudodifferential operator Q = Op(q) ∈ Ψm whose symbol q has the

formal development:

q(ϕ(x), ξ) ∼ α(x)
∑

α

i|α|

α!
Dα
y e

i(ϕ(y)−ϕ(x)− ∂ϕ
∂x

(y−x)).ξ |y=xDα
ξ p(x, (

∂ϕ

∂x
(x))tξ),

where (∂ϕ∂x (x)) denotes the Jacobi matrix.

For a proof, see [8], chap. I, § 1.3. Assume in (iii) that P has compact sup-

port K ⊂ U , and denote by ϕ∗P the compactly supported pseudodifferential

operator defined by (ϕ∗P )(u) = P (u ◦ ϕ) ◦ ϕ−1. By (iii), we get:

q(ϕ(x), ξ) ∼ p(ϕ−1(x), (
∂ϕ

∂x
(x))tξ) (mod Sm−1),

where q is the symbol of ϕ∗P . This shows that, modulo symbols of lower

order, the symbol of a pseudodifferential operator transforms by change of

variable like a function on the cotangent bundle. This observation leads to

the following definition:

Definition 2.1.12. Let P = Op(p) ∈ Ψm. The principal symbol σ(P ) of P

is by definition the ressidue class of p in Sm/Sm−1.

If Op(p) =
∑

|α|≤m
Aα(x)Dα, a representative of σ(P ) is given by the symbol:
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σP (x, ξ) =
∑

|α|=m
Aα(x)ξα.

For instance, the principal symbol of the Cauchy-Riemann operator ∂
∂Z

=
∂
∂x1

+ i ∂
∂x2

in IR2 is: ∂ ∂
∂z

(x, ξ) = iξ1 − ξ2.

2.2 Pseudodifferential operators on manifolds

Let M be a n-dimensional smooth compact Riemannian manifold without

boundary. Denote by π : T ∗M −→M the canonical projection. Let E, F be

smooth complex vector bundles over M .

Definition 2.2.1. A linear operator P : C∞(M,E) −→ C∞(M,F ) is called

pseudodifferential of order m ∈ IR if, for every open chart U on M trivializing

E and F and any ϕ,ψ ∈ C∞
c (U), the localized operator ϕPψ is pseudodif-

ferential of order m (with compact x-support) on the chart U , viewed as an

open subset of IRn.

As above, we identify here ϕ with the multiplication operator by ϕ. We shall

denote by Ψm(M ;E,F ) the space of all pseudodifferential operators of order

m acting from the sections of E to the sections of F . Let Sm(T ∗M) be the

set of all p ∈ C∞(T ∗M) such that the pullback to any local chart of M is in

Sm, and define analogously Sm(T ∗M,Hom(π∗E, π∗F )). By theorem 2.1.11

(iii), any P ∈ Ψm(M ;E,F ) has a principal symbol:

σ(P ) ∈ Sm(T ∗M,Hom(π∗E, π∗F ))/Sm−1(T ∗M,Hom(π∗E, π∗F )).

Let us denote by dvol the Riemannian measure on M and by Hs(M,E) the

Sobolev space of exponent s ∈ IR for the sections of the vector bundle E

over M . This space is equipped with the norm ‖u‖s =

q∑

i=1

‖ϕiu‖s, where

(ϕ1, ..., ϕq) is a smooth partition of unity subordinate to a covering of M by

charts trivializing E. From theorem 2.1.4, we get:

Theorem 2.2.2. Any P ∈ Ψm(M ;E,F ) extends, for any s ∈ IR, to a con-

tinuous map P : Hs+m(M,E) −→ Hs(M,F ).

Exercise 2.2.3. Show that any P ∈ Ψm(M ;E,E) with m ≤ 0 defines a

bounded operator in L2(M,E).
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Definition 2.2.4. A linear operator P : C∞(M,E) −→ C∞(M,F ) is called

infinitely smoothing if it extends to a bounded map P : Hs+m(M,E) −→
Hs(M,F ) for any s ∈ IR.

We shall denote by Ψ−∞(M ;E,F ) the space of all infinitely smoothing op-

erators P : C∞(M,E) −→ C∞(M,F ). It is straightforward to check that

Ψ−∞(M ;E,F ) =
⋂

m

Ψm(M ;E,F ).

Exercise 2.2.5. Let P : C∞(M,E) −→ C∞(M,F ) be a linear operator.

Show that P ∈ Ψ−∞(M ;E,F ) if and only if P can be written as an integral

operator:

Pu(x) =

∫

M

K(x, y)u(y)dvol(y),

where K(x, y) ∈ Hom
lC
(Ey, Fx) varies smoothly with x and y on M .

Let us now collect some classical results about pseudodifferential operators

on manifolds.

Theorem 2.2.6. Let M,E,F be as above.

(i) Any P ∈ Ψm(M ;E,F ) can be written as finite sum:

P =

q∑

i=1

Pi +R,

where R is an infinitely smoothing operator on M and each Pi is an

order m pseudodifferential operator compactly supported by a local chart

Ui trivializing E and F (more precisely, Pi = ϕiPiψi where ϕi, ψi are

smooth functions on M with compact support on Ui);

(ii) For any P ∈ Ψm(M ;E,F ), any open subset U of M and any u ∈
Hs(M,E) such that u|U is C∞, the section Pu of F is C∞ over U ;

(iii) Let P ∈ Ψm(M ;E,E) be a pseudodifferential operator of order m ≤ 0,

viewed as a bounded operator in L2(M,E) (cf. exercise 2.2.5).

If m < 0, P is a compact operator;

If m < −n/2, P is Hilbert-Schmidt operator of the form:

Pu(x) =

∫

M

KP (x, y)u(y)dvol(y),
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where KP (x, y) ∈ Hom(Ey, Fx) varies continuously with x and y on M ;

If m < −n/p, P belongs to the Schatten class Cp
2 ;

In particular, if m < −n, P is a trace-class operator and Tr(P ) =∫
M

tr(KP (x, x))dvol(x).

(iv) If P ∈ Ψm(M ;E,F ) and Q ∈ Ψ r(M ;F,G), then:

QP = Q ◦ P ∈ Ψm+r(M ;E,G);

(v) Let P ∈ Ψm(M ;E,F ) and assume that P has a formal adjoint i.e. there

exists an operator P ∗ : C∞(M,F ) −→ C∞(M,E) such that:

< Pu, v >L2(M,F )=< u,P ∗v >L2(M,E)

for any smooth sections u and v. Then, P ∗ ∈ Ψm(M ;F ∗, E∗).

Let us end up this section by giving a specific example of a differential oper-

ator on a manifold.

2.2.7 The signature operator. Let M be a compact oriented Riemannian

manifold without boundary, of dimension n = 4k. Denote by d the exterior

derivative d : C∞(M,Λ∗(T ∗M ⊗ lC)) −→ C∞(M,Λ∗(T ∗M ⊗ lC)). The metric

g on M induces a scalar product on Λp(T ∗
xM) by the formula:

< aIdx
I |bJdxJ >= p!gi1j1...gipjpaIbJ ,

where I = (i1, ..., ip), J = (j1, ..., jp) and gij =< dxi|dxj >. Denote by δ

the formal adjoint of d with respect to this scalar product. To describe δ, let

us introduce the Hodge-star operation. Let vol =
√
gdx1 ∧ ... ∧ dxn be the

volume form. The Hodge star operator ∗ : Λp(T ∗
xM) −→ Λn−p(T ∗

xM) is by

definition the only linear map satisfying:

< α|β > vol = α ∧ ∗(β) for any α, β ∈ Λp(T ∗
xM).

It is easy to check that δ = − ∗ d∗, so that δ is an order one differential

operator on M . Set:

D = d+ δ;

2 Recall that Cp is the space of compact operators T acting on a separable Hilbert space

H such that Tr(| T |p) < +∞. For more information on the Schatten class Cp, we refer

to [19].
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we thus define a self-adjoint order one diffferential operator. The signature

operator is obtained by restriction of D to the positive part of some grading

on C∞(M,Λ∗(T ∗M ⊗ lC)) that we shall now describe. To this end, note that

we have ∗(∗α) = (−1)pid, so that the operator:

ε = i2k+p(p−1)∗ : Λp(T ∗M ⊗ lC) −→ Λ4k−p(T ∗M ⊗ lC)

defines a grading on Λ∗(T ∗M ⊗ lC), i.e. ε2 = 1. The ±1-eigenspaces E± =

Λ±(T ∗M ⊗ lC) of ε give rise to a direct sum decomposition:

Λ∗(T ∗M ⊗ lC) = E+ ⊕ E−,

and since D = d+ δ anticommutes with the grading ε, it decomposes to give

rise to operators D± : C∞(M,
∧+(T ∗M ⊗ lC)) −→ C∞(M,Λ−(T ∗M ⊗ lC)).

The signature operator is by definition the operator

D+ : C∞(M,E+) −→ C∞(M,E−).

It is an order one differential operator on M with principal symbol:

σ(D+)(x, ξ) = i(ext(ξ) − int(ξ)),

where ext(ξ) is the exterior multiplication by ξ and int(ξ) its adjoint. Note

that int(ξ) is just interior multiplication by ξ since we have for any local

orthonormal basis (e1, ..., en) for T ∗M :

int(e1)(ei1 ∧ ei2 ∧ ... ∧ eip) =

{
ei2 ∧ ... ∧ eip if i1 = 1

0 if i1 > 1.

2.3 Analytical index of an elliptic operator

Let M be a n-dimensional smooth compact manifold without boundary and

denote by π the projection T ∗M −→ M . Let P : C∞(M,E) −→ C∞(M,F )

be a pseudodifferential operator of order m, where E,F are smooth complex

vector bundles over M . Recall that P has a principal symbol σP ∈ Sm/Sm−1,

where Sk = Sk(T ∗M,Hom(π∗E, π∗F )).

Definition 2.3.1. We say that P ∈ Ψm(M ;E,F ) is elliptic if its princi-

pal symbol σP has a representative p ∈ Sm(T ∗M,Hom(π∗E, π∗F )) which is

pointwise invertible outside a compact set in T ∗M and satisfies the estimate
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|p(x, ξ)−1| ≤ C(1 + |ξ|)−m

for some constant C and some riemannian metric on M .

Example 2.3.2. The signature operator D+ on a 4k-dimensional compact

oriented manifold M without boundary is elliptic, since we have:

σ(D+)(x, ξ)2 = −(ext(ξ)− int(ξ))2 = ‖ξ‖2id.

The following result shows that an elliptic pseudodifferential operator on a

compact manifold M is invertible modulo infinitely smoothing operators:

Theorem 2.3.3. Let P ∈ Ψm(M ;E,F ) be an order m elliptic pseudodiffer-

ential operator on M . Then, there exists Q ∈ Ψ−m(M ;F,E) such that:

QP − I ∈ Ψ−∞(M,E,E) and PQ− I ∈ Ψ−∞(M,F,F ).

The operator Q is called a parametrix for P .

Sketch of proof. We shall essentially prove that P admits a parametrix locally.

Case of an elliptic operator on IRn. Let P be a pseudodifferential operator

of order m on IRn whose principal symbol p is pointwise invertible outside

a compact set in T ∗ IRn and satisfies the estimate |p(x, ξ)−1| ≤ C(1 + |ξ|)−m
for some constant C. We are going to construct a parametrix Q for P from a

formal development q ∼
∞∑

k=0

qk of its symbol, where qk ∈ S−m−k. By adding

some infinitely smoothing operator to P , we may assume that P is 1-local

and ask that Q is 1-local too. Since the formal development of the symbol of

QP is given by:

∑

α

i|α|

α!
(Dα

ξ q)(D
α
xp) =

∑

k

∑

α

i|α|

α!
(Dα

ξ qk)(D
α
xp),

where (Dα
ξ qk)(D

α
xp) is a symbol of order −k− |α|, it is natural to determine

qk ∈ S−m−k in such a way that:




q0p− I ∈ S−∞

qkp+
∑k−1

j=0

[
∑

|α|+j=k
i|α|

α! (Dα
ξ qj)(D

α
xp)

]
∈ S−∞ for k = 1, 2, ...
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Let us now solve these equations. Note that we only have to choose q0, because

we can determine inductively q1, q2, ... from q0 by setting:

(∗) qk = −
k−1∑

j=0

[
∑

|α|+j=k

i|α|

α!
(Dα

ξ qj)(D
α
xp)

]
q0.

To get q0, we set q0(x, ξ) = θ(|ξ|)p(x, ξ)−1, where θ : IR+ −→ [0, 1] is a

smooth function such that θ(t) = 0 for t ≤ C and θ(t) = 1 for t ≥ 2C. It

is easy to check that q0 ∈ S−m. Consider now the asymptotic series
∞∑

k=0

qk

where the qk’s are given by (∗). There exists a 1-local pseudodifferential Q

of order −m with symbol q satisfying q ∼
∞∑

k=0

qk. From the formula for the

symbol of a product, we get that QP − I is infinitely smoothing. In the same

way, we get a pseudodifferential operator Q′ such that PQ′ − I is infinitely

smoothing. But we have, modulo infinitely smoothing operators:

Q ≡ Q(PQ′) = (QP )Q′ ≡ Q′,

so that Q is a parametrix for P .

General case. To avoid technical difficulties, we shall only consider the case

of a differential operator P ∈ Ψm(M ;E,F ). Choose a covering of M by open

charts Uα trivializing E and F , with local coordinates

xα : Uα −→ xα(Uα) = IRn

such that the open subsets Ωα = {m ∈ Uα| |xα(m)| < 1} cover M . Let (ϕα)α

be a partition of unity subordinate to the Ωα. Then the restriction Pα of P

to Uα, viewed as differential operator on IRn, has a parametrix Qα that we

may assume to be 1-local. Since Qα is 1-local, the operators ϕαQα and Qαϕα

have compact support in Ω′
α = {m ∈ Uα| |xα(m)| < 2} ⊂ Uα, and hence

make sense as pseudodifferential operators in Ψ−m(M ;E,F ). Set:

Q =
∑

α

ϕαQα ∈ Ψ−m(M ;E,F ) and Q′ =
∑

α

Qαϕα ∈ Ψ−m(M ;E,F ).

We have:

PQ′ − I =
∑

α

(PQαϕα − ϕα) =
∑

α

(PαQα − I)ϕα =
∑

α

Rαϕα,
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where Rα = PαQα − I is a 1-local infinitely smoothing operators in Uα, so

that Rαϕα ∈ Ψ−∞(M ;E,F ). It follows that PQ′ − I is infinitely smoothing.

In the same way, QP − I is infinitely smoothing, and since we have

Q−Q′ ∈ Ψ−∞(M ;E,F )

as in the first step, the proof is complete. QED

Corollary 2.3.4. Let P ∈ Ψm(M ;E,F ) be an order m elliptic pseudodiffer-

ential operator on a compact manifold M . For any s ∈ IR, the operator P

extends to a Fredholm operator Ps : Hs+m(M,E) −→ Hs(M,F ) whose index

Ind(Ps) is independent of s.

Proof. By theorem 2.3.3, there exists Q ∈ Ψ−m(M ;F,E) such that PQ− I
and QP − I are infinitely smoothing. Denote by Qs : Hs(M,F ) −→
Hs+m(M,E) the unique extension of Q to Hs(M,F ). Since an infinitely

smoothing operator from Hr(M,E) into itself is compact, we get that

QsPs−I and PsQs−I are compact, and hence Ps is Fredholm. Since QsPs−I
is infinitely smoothing, we have u = −(QsPs − I)u ∈ C∞(M,E) for any

u ∈ Ker(Ps), and hence:

Ker(Ps) = Ker(P ) ⊂ C∞(M,E).

In the same way, we get Ker(P ∗
s ) = Ker(P ∗) ⊂ C∞(M,F ), where P ∗ is the

formal adjoint of P , and hence Ind(Ps) is independent of s. QED

Definition 2.3.5. Let P ∈ Ψm(M ;E,F ) be an elliptic operator on a com-

pact manifold M . The index Ind(Ps) of any extension Ps : Hs+m(M,E) −→
Hs(M,F ) is called the analytical index of P and is denoted by Ind(P ). Let

us now compute the analytical index of the signature operator on a com-

pact riemannian manifold M without boundary. We assume here that M

is 4k-dimensional and oriented. Recall that the signature σ(M) of M is by

definition the signature of the symmetric bilinear form

H2k(M, lC)×H2k(M, lC) −→ lC

([ω1], [ω2]) −→
∫

M

ω1 ∧ ω2
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induced by the cup-product in cohomology.

Theorem 2.3.6. The index of the signature operator on M is equal to the

signature σ(M) of M .

Proof. Since D = d+ δ anticommutes with the grading ε, we have:

D =

(
0 D∗

+

D+ 0

)

where D+ is the signature operator on M . But D2 = (d + δ)2 = dδ + δd is

nothing but the Hodge-Laplace operator ∆, so that we get:

∆ = D2 =

(
D∗

+D+ 0

0 D+D
∗
+

)
,

and hence D∗
+D+ = ∆+ (resp.D+D

∗
+ = ∆−) is the restriction of ∆ to the

+1 (resp. −1) eigenspace of ε. It follows that:

Ind(D+) = dim(KerD+)− dim(KerD∗
+)

= dim(KerD∗
+D+)− dim(KerD+D

∗
+)

= dim(Ker∆+)− dim(Ker∆−)

and hence:

Ind(D+) = (dim(Ker∆2k
+ )− dim(Ker∆2k

− ))

+

2k−1∑

p=0

(dim(Ker∆p
+)− dim(Ker∆p

−)),

where we denote by ∆p
± the restriction of ∆± to the ε-invariant subspace

C∞(M,Λp
C
(T ∗M)⊕ Λ4k−p

C
(T ∗M)) for p = 0 , 1 , ..., 2k .

But we have:

ω ∈ Ker∆p
± ⇐⇒ ω = α± ε(α) for a harmonic p-form α,

and since the map α + ε(α) −→ α − ε(α) induces an isomorphism between

Ker(∆p
+) and Ker(∆p

−) for p = 0, 1, ..., 2k − 1, we get:

Ind(D+) = dim(Ker∆2k
+ )− dim(Ker∆2k

− ).
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By Hodge theory, Ker(∆2k) identifies with H2k(M, lC). Denote by H± the

±1 eigenspace of ε = ∗ on 2k-harmonic forms. Since we have:

∫

M

ω ∧ ω = ±
∫

M

ω ∧ (∗ω) = ± < ω|ω > for any ω ∈ H±,

the signature form is positive definite on H+ and negative definite on H−, so

that finally Ind(D+) = σ(M). QED

Exercise 2.3.7. Show that the analytical index of the De Rham operator D

on a compact oriented Riemannian manifold M without boundary is given

by:

Ind(D) =

dim(M)∑

i=0

(−1)idim(H i(M, lC)).

3 Topological K-theory

The analytical index of an elliptic operator P of order m on a compact man-

ifold M is computable from its principal symbol σ(P ) of order m. When

m = 0, this principal symbol yields an element in the K-thery group (with

compact support) of T ∗M , and the analytical index can be viewed as a

map [σ(P )] ∈ K0(T ∗M) −→ Ind(P ) ∈ Z. The aim of this section is to

introduce the topological K-theory of locally compact spaces, in order to

give a topological description of the above index map. Since it does not re-

quire more effort, we shall simultaneously introduce the topological K-functor

A −→ K∗(A) = K0(A)⊕K1(A) for C∗-algebras.

3.1 The group K0(X)

Definition 3.1.1. Let X be a compact space. The K-theory group K0(X)

is the abelian group generated by the isomorphism classes of complex vector

bundles over X with the relations: [E⊕F ] = [E] + [F ] for any pair (E,F ) of

vector bundles over X.

Every element of K0(X) is thus a difference [E] − [F ], where E and F are

complex vector bundles over X. In this representation, we have (with obvious
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notations): [E]−[F ] = [E′]−[F ′]⇐⇒ (∃G) such that E⊕F ′⊕G ∼= E′⊕F⊕G.

Denote by [τ ] the K-theory class of the trivial bundle of rank 1 over X. Since

there exists, for any complex vector bundle E over a compact space X, a

vector bundle F over X such that E ⊕ F ∼= X × lCn (trivial bundle of rank

n), any element in K0(X) can be written in the form [E] − n[τ ] for some

bundle E over X and n ∈ IN.

Example 3.1.2. A vector bundle over a point is a finite dimensional complex

vector space, and two such vector bundles are isomorphic if and only if they

have same dimension. Henceforth, K0(pt) is isomorphic to Z.

Exercise 3.1.3. Show that K0(S1) ∼= Z.

Note that any continuous map f : X −→ Y between compact spaces induces

a group homomorphism f∗ : K0(Y ) −→ K0(X) by f∗([E]) = [f∗(E)], where

f∗(E) = {(x, ζ) ∈ X × E|f(x) = π(ζ)} is the pull-back to X of the complex

vector bundle E
π−→ Y over Y .

Definition 3.1.4. If X is a locally compact space X, the K-theory group

K0(X) (with compact support) is by definition the kernel of the map K0(X̂) −→
K0({∞}) = Z induced by the inclusion of {∞} into the one-point compacti-

fication X̂ = X ∪ {∞} of X.

Racall that a continuous map f : X −→ Y between locally compact spaces is

called proper if f−1(K) is compact for any compact subset K of Y . From the

definition of K0(X), it is clear that X −→ K0(X) is a contravariant functor

from the category of locally compact spaces with proper continuous maps to

abelian groups.

Exercise 3.1.5. Show that we have K0(X̂) = K0(X) ⊕ Z for any non-

compact locally compact space X. Prove that K0( IR) = {0}.

Exercise 3.1.6. Let X be a compact space that can be written as a disjoint

union of two open subspaces X1 and X2. Prove that K0(X) ∼= K0(X1) ⊕
K0(X2).

The main property of the functor X −→ K0(X) is its homotopy invariance:
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Theorem 3.1.7. Let X,Y be two locally compact spaces and ft : X −→
Y (0 ≤ t ≤ 1) be a continuous path of proper maps from X to Y . Then, we

have:

f∗0 = f∗1 : K0(Y ) −→ K0(X).

For a proof of this result, see [10], theorem 1.25, p. 56.

Exercise 3.1.8. By using theorem 3.1.7, show that K0(]0, 1]) = {0}.

Exercise 3.1.9. By using the correspondence between complex vector bundles

over a compact space X and idempotents in matrix algebras over C(X), try

to give a proof of theorem 3.1.7.

3.2 Fredholm operators and Atiyah’s picture of K0(X)

Let X be a compact space and denote by H a separable infinite dimensional

Hilbert space. Since the product of two Fredholm operators is Fredholm,

the space [X,Fred(H)] of homotopy classes of continuous functions from X

to Fred(H) has a natural semigroup structure. The following description of

K0(X) by continuous fields of Fredholm operators can be found in [1]:

Theorem 3.2.1. There is a group isomorphism Ind : [X,Fred(H)] −→
K0(X) such that: Ind ◦ f∗ = f∗ ◦ Ind for any continuous map f : X −→ Y

of compact spaces.

Sketch of proof. Naively, we would like to define the index map Ind by

setting:

(1) Ind([T ]) = [(KerTx)x∈X ]− [(KerT ∗
x )x∈X ] ∈ K0(X),

where [T ] denotes the the homotopy class of the continuous map

x ∈ X −→ Tx ∈ Fred(H).

But since the dimension of Ker(Tx) is not locally constant in general,

(KerTx)x∈X and (KerT ∗
x )x∈X are not vector bundles over X so that the

heuristic formula (1) does not make sense. To overcome this difficulty, fix a

point x0 ∈ X and consider the map:
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T̃x : (ζ, η) ∈ Ker(T ∗
x0

)⊕H −→ ζ + Txη ∈ H,

which is defined for x in a neighborhood of x0. Since T̃x0 is surjective, T̃x

is surjective for x in some neighborhood of x0 and we get by the homotopy

invariance of the index:

dim(KerT̃x) = Ind(T̃x) = Ind(T̃x0) = dim Ker(Tx0) = Constant.

Now, by using a partition of unit, it is easy to patch together such local

constructions (in the neighborhood of any point x ∈ X) to construct a finite

number of continuous maps ζi : X −→ H(i = 1, 2, ..., N) satisfying the

following two conditions:

(i) For any x ∈ X, the map

T̃x : (λ, η) ∈ lCN ⊕H −→ T̃x(λ, η) = ΣN
i=1λiζi(x) + Txη ∈ H

is surjective;

(ii) The function x −→ dim(KerT̃x) is locally constant.

Now, (KerT̃x)x∈X is a vector bundle overX by (ii) and we can define correctly

the index map Ind : [X,Fred(H)] −→ K0(X) by setting (in view of (i)):

Ind([T ]) = [(KerT̃x)x∈X ]− [ lCN ] ∈ K0(X).

It remains to check that Ind is a well defined map which is a group iso-

morphism. It is straghtforward to check that Ind is a well defined group

homomorphism. To prove that Ind is an isomorphism, we can check that

[X,GL(H)] −→ [X,Fred(H)]
Ind−→ K0(X) −→ 0

is an exact sequence (this is not hard) and use the contractibility of GL(H)

(Kuiper’s theorem3) to get [X,GL(H)] = 0. QED

3.3 Excision in K-theory

Let Y be a closed subspace of a locally compact space X. The relative K-

theory group K0(X,Y ) is defined as a quotient of the set Q(X,Y ) of triples

(E0, E1, σ) where E0, E1 are complex vector bundles over X that are direct

factors of trivial bundles, and σ ∈ Hom(E0, E1) is a morphism of vector

bundles such that:
3 For a proof of Kuiper’s theorem, see [14].
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(i) There is a compact subset K of X such that σ|X−K : E0|X−K −→ E1|X−K
is an isomorphism;

(ii) σ|Y : E0/Y −→ E1|Y is an isomorphism.

If σ is an isomorphism, the triple (E0, E1, σ) is called degenerate. There are

obvious notions of sum, isomorphism and homotopy of pairs of triples in

Q(X,Y ). Let us say that (E0, E1, σ) ∈ Q(X,Y ) and (E′
0, E

′
1, σ

′) ∈ Q(X,Y )

are equivalent if there exist degenerate triples (F0, F1, ρ), (F
′
0, F

′
1, ρ

′) ∈ Q(X,Y )

and isomorphisms of bundles θ0 : E0⊕F0 −→ E′
0⊕F ′

0, θ1 : E1⊕F1 −→ E′
1⊕F ′

1

such that (E0⊕F0, E1⊕F1, σ⊕ρ) is homotopic to (E0⊕F0, E1⊕F1, θ
−1
1 (σ′⊕

ρ′)θ0) in Q(X,Y ).

Definition 3.3.1. Let Y be a closed subspace of a locally compact space

X. The quotient of Q(X,Y ) by the above equivalence relation is denoted by

K0(X,Y ).

K0(X,Y ) is clearly an abelian group for the direct sum. The excision property

can be expressed as follows:

Theorem 3.3.2. (Excision). For any closed subspace Y of a locally compact

space X, we have natural isomorphisms:

K0(X,Y ) ∼= K0(X − Y ) ≈ K0(X/Y, {∞}),

where X/Y denotes the one-point compactification of X − Y obtained by

identifying all points in Y to a single point {∞}.

Sketch of proof. The second isomorphism is a tautology. To prove the first

isomorphism, we may restrict our attention to the case where X is compact,

since we have a natural isomorphism K0(X,Y ) ∼= K0(X̂, Ŷ ) where X̂ is the

one point compactification of X. Let Z be the compact space obtained by

gluing two copies X0 = X1 = X of X along the common part Y0 = Y1 = Y

and denote by i : X1 −→ Z the natural inclusion. Since there is an obvious

retraction ρ : Z −→ X1, one can show that the natural exact sequence:

0 −→ K0(Z −X1) ∼= K0(X − Y )
j∗−→ K0(Z)

i∗−→ K0(X1) −→ 0

is split exact, so that K0(Z) ∼= K0(X −Y )⊕K0(X1). We can now construct

the isomorphism K0(X,Y )
∼=−→ K0(X − Y ). Let [E0, E1, σ] ∈ K0(X,Y ) and
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consider the complex vector bundle F over Z obtained by identifying E0 and

E1 over Y via the isomorphism σ|Y . Since the element [F ]− [ρ∗(E1)] ∈ K0(Z)

belongs to Ker(i∗), there is a unique element χ(E0, E1, σ) ∈ K0(X−Y ) such

that j∗(χ(E0, E1, σ)) = [F ]− [ρ∗(E1)]. It is now straightforward to check that

the map (E0, E1, σ) −→ χ(E0, E1, σ) defines an isomorphism from K0(X,Y )

to K0(X − Y ). QED

Definition 3.3.3. Let X be a locally compact space. We call quasi isomor-

phism over X any triple (E0, E1, σ) where E0, E1 are complex vector bundles

over X and σ ∈ Hom(E0, E1) a morphism of vector bundles which is an

isomorphism outside some compact subset of X.

It follows from theorem 3.3.2 that any element in K0(X) can be represented

by a quasi-isomorphism (E0, E1, σ) over X.

This slightly different point of view on K-theory with compact support

allows to describe a multiplication in K0(X) by using the following heuristic

formula:

[(E0, E1, σ)] ⊗ [(F0, F1, τ)] =

[((E0 ⊗ F0)⊕ (E1 ⊗ F1), (E0 ⊗ F1)⊕ (E1 ⊗ F0), σ⊗̂1 + 1⊗̂τ)],

where σ⊗̂1 + 1⊗̂τ =

(
σ ⊗ 1 −1⊗ τ∗
1⊗ τ σ∗ ⊗ 1

)
(sharp product).

This product can be used to prove the Thom isomorphism for complex vector

bundles. Let π : E −→ X be a complex hermitian vector bundle over a

compact space X, and consider the triple:

Λ−1(E) = (E0 = π∗(ΛevC E), E1 = π∗(ΛoddC E), σ),

where Λev
C
E =

⊕

p

Λ2p
C
E and σ : E0 −→ E1 is the morphism of bundles

(over the total space of E) given by σ(x, ζ)(ω) = ζ ∧ ω − ζ∗⌊ω. Although

Λ−1(E) is not a quasi-isomorphism over E, its sharp product π∗(F0, F1, ϕ)⊗
Λ−1(E) where (F0, F1, ϕ) is a quasi-isomorphism over X, yields an element in

K0(E) which only depends on [(F0, F1, ϕ)]. Let us denote by π∗([F0, F1, ϕ])⊗
[Λ−1(E)] this element. We have:
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Theorem 3.3.4.(Thom isomorphism for complex hermitian bundles). For

any complex hermitian vector bundle π : E −→ X over a compact space X,

the map:

[(F0, F1, ϕ)] ∈ K0(X) −→ π∗([F0, F1, ϕ])⊗ [Λ−1(E)] ∈ K0(E)

induces an isomorphism of K-theory groups.

For a proof of this result, see [10].

Exercise 3.3.5. Show that K0( IR2n) ∼= Z.

3.4 The Chern Character

For any locally compact space X, denote by H∗(X, lQ) the rational Čech

chomology of X with compact support. We have by setting Hev(X, lQ) =∑

k

H2k(X, lQ):

Theorem 3.4.1. There exists a natural homomorphism ch : K0(X) −→
Hev(X, lQ), called the Chern character, which satisfies the following proper-

ties:

(i) ch(f∗(x)) = f∗(ch(x)) for any proper map f : X −→ Y and x ∈ K0(Y );

(ii) ch(x + y) = ch(x) + ch(y) for x, y ∈ K0(X);

(iii) ch([L]) = ec1(L) for any complex line bundle L over X, where c1(L) is

the first Chern class of L, i.e. the image of the 1-cocycle associated with

the S
1-bundle L by the natural isomorphism c1 : H1(X,S1)

∼=−→ H2(X,Z);

(iv) ch([E ⊗ F ]) = ch([E])ch([F ]) for any pair (E,F ) of complex vector

bundles over X;

(v) If X is compact, the Chern character extends to an isomorphism:

ch : K0(X)⊗ lQ
∼=−→ Hev(X, lQ).

Let us give a construction of the Chern character.

3.4.2 Construction of the Chern character.
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Assume for simplicity that X is a compact manifold M . Let E be a k-

dimensional complex vector bundle over M and choose a connexion ∇ on E.

To any polynomial function P : Mk( lC) −→ lC such that P (XY ) = P (Y X)

for any X,Y ∈ Mk( lC) (one say that P is an invariant polynomial), we can

associate a closed differential form P (E) on M by the formula P (E) = P (Ω),

where Ω is the curvature of the connexion ∇, which is a 2-form on M with

values in End(E). Choosing a local framing for E, we may identify Ω with a

matrix of ordinary 2-forms. Since P is an invariant polynomial, one can check

that P (Ω) is a well defined differentiable form (independent of the choice of

the local framing) whose cohomology class, again denoted by P (E), does not

depend on the connexion ∇ in E (see for instance [18], prop. 10.5, p. 112).

The Chern character of E is defined by:

ch(E) :=
∑

k≥0

sk(E) ∈ Hev(M),

where sk is the invariant polynomial sk(X) = 1
k!Tr(

(
X
4iπ

)k
). We thus have

formally:

ch(E) = [Tr(exp(
Ω

4iπ
))] ∈ Hev(M),

where Ω is the curvature of some connexion ∇ on E. One can prove that the

Chern character only depends on the K-theory class of E, and extends to a

homomorphism ch : K0(X) −→ Hev(X, lQ), which is the Chern character of

theorem 3.4.1.

3.4.3 Computation of the Chern character.

Since the ring of invariant polynominals onMk( lC) is generated by the polyno-

mials ck(X) = Tr(ΛkX)
(4iπ)k , we can express ch(E) from the corresponding Chern

classes ck(E) ∈ H2k(X, lQ). We get:

ch(E) = dim(E) + c1(E) +
1

2
(c21(E)− 2c2(E)) + ... (see below).

Exercise. Show that ci(E) = (−1)ici(E) where E is the conjugate bundle of

E.
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Let us denote by (xi) the eigenvalues of Ω
4iπ . We have:





x1 + ...+ xm = c1

x1x2 + ...+ xm−1xm−2 = c2

..........................

x1...xm = cm

where m = dim(E), so that the Chern classes are the elementary symetric

functions of the xi. It follows that any symmetric formal power series in the

xi, which can therefore be expressed in terms of the elementary symmetric

functions of the xi, yields a cohomology class in H∗(M, lQ). For instance, any

function f(z) holomorphic near z = 0 gives rise to a cohomology class by the

formula:

f(E) =
m∏

i=1

f(xi).

When E =

m⊕

i=1

Li is a sum of complex line bundles Li, we can choose xi =

c1(Li) ∈ H2(M,Z) and we get from theorem 3.4.1:

ch(E) =

m∑

i+1

ch(Li) =

m∑

i=1

exi = m+

m∑

i=1

xi +
1

2

m∑

i=1

x2
i + ...

= dim(E) + c1(E) + 1
2(c21(E)− 2c2(E)) + ...

For instance, it follows from the relation Λk(E ⊕ F ) =
∑

i+j=k

Λi(E) ⊗ Λj(F )

that:

ch([Λeven(E)]− [Λodd(E)]) =

m∏

i=1

(1− exi).

Of course, a complex vector bundle E over M is not always isomorphic to

a sum of complex line bundles. However, if we just want to identify ch(E)

with some naturally defined cohomology class (for instance, with f(E) for

some power series f(z)), we may use the following splitting principle (see [9],

proposition 5.2, p. 237 for a proof):

Splitting principle. For any complex vector bundle over a manifold M ,

there exists a smooth fibration f : N −→M such that:

(i) f∗(E) splits into a direct sum of complex line bundles;
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(ii) f∗ : H∗(M, lQ) −→ H∗(N, lQ) is injective.

To define the higher K-theory groups Kn(X) (n ≧ 1) of a locally compact

space X, we shall directly define the K-groups Kn(A) of a C∗-algebra A

and set Kn(X) = Kn(C0(X)), where C0(X) is the C∗-algebra of continuous

functions on X vanishing at the infinity.

3.5 Topological K-theory for C∗-algebras

3.5.1 C∗- algebras. Recall that a C∗-algebra is a complex Banach algebra

A with involution x ∈ A −→ x∗ ∈ A whose norm satisfies:

‖x∗x‖ = ‖x‖2 for any x ∈ A.

By Gelfand theory, any commutative C∗-algebra is isometrically isomorphic

to the C∗-algebra C0(X) of complex continuous functions vanishing at infinity

on some locally compact space X (the spectrum of A). If H is a Hilbert space,

a closed ∗-subalgebra of B(H) is a C∗-algebra, and any C∗-algebra can be

realized as a closed ∗-subalgebra of B(H) for some Hilbert space H. For

instance, the algebra K(H) of all compact operators on a separable Hilbert

space H is a C∗-algebra. C∗-algebras naturally appear in non-commutative

topology to describe “quantum spaces” like the quotient of a locally compact

space X by a non proper action of a discrete group Γ For instance, the “dual”

of a discrete groupe Γ . is described by the C∗-algebra C∗(Γ ) generated in

B(l2(Γ )) by the left regular representation λ defined by:

[λ(g)ξ](h) = ξ(g−1h), where g , h ∈ Γ and ξ ∈ l2 (Γ ).

Another example is the crossed product C∗-algebra A×αG of a C∗-algebra A

by a continuous action g ∈ G −→ αg ∈ Aut(A) of a locally compact group G

acting on A by automorphisms. Here, we assume that g ∈ G −→ αg(x) ∈ A
is continuous for any x ∈ A and we denote by ∆G the modular function of

G. The vector space Cc(G,A) of continuous compactly supported functions

on G with values in A has a natural structure of ∗-algebra. To describe this

structure, it is convenient to write any element a ∈ Cc(G,A) as a formal

integral a =
∫
a(g)Ugdg, where Ug is a letter satisfying:

Ugh = UgUh, U
∗
g = U−1

g = Ug−1 , and UgxU
−1
g = αg(x) for any x ∈ A.
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Then, the product and the involution on Cc(G,A) are given by:

(∫
a(g)Ugdg

)(∫
b(g)Ugdg

)
=

∫
c(g)Ugdg,

where c(g) =

∫
a(h)αh (b(h−1 g))dh

and (

∫
a(g)Ugdg)∗ =

∫
b(g)Ugdg , where b(g) = ∆G(g)αg (a(g−1 )∗).

There are two natural ways of completing Cc(G,A) to get a crossed product

C∗-algebra A×αG; they coincide when G is amenable. For more information

on this subject, we refer to [17], p. 240.

Exercise 3.5.2. Let θ be an irrational number and consider the action α of Z

on C(S1) defined by: α(f)(z) = f(e−2iπθz). Show that Aθ = C(S1)×αZ is the

C∗-algebra generated by two unitaries U and V satisfying the commutation

relation:

UV = e2iπθV U.

(non commutative 2-torus).

3.5.3 K0 of a C∗-algebra.

Let A be a unital C∗-algebra. Recall that a finitely generated right module

E over A is called projective if there exists a right module F over A such

that E ⊕ F ∼= An. For instance, if e ∈ Mn(A) is an idempotent, E = eAn

is a finitely generated projective module over A. Conversely, any finitely

generated projective right A-module is of the above form.

Exercise 3.5.4. Let X be a compact space. For any complex vector bundle

E on X, denote by E the module of continuous sections of E. Show that E

is a finitely generated projective module over C(X).

Let A be a unital C∗-algebra, and denote by K0(A) the set of isomorphism

classes of finitely generated projective A-modules. The direct sum of modules

induces a commutative and associative sum on K0(A).

Definition 3.5.5. The group of formal differences [E] − [F] of elements in

K0(A) is denoted by K0(A).
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Exercise 3.5.6. Show that K0(Mn( lC)) ∼= Z.

Note that any unital ∗-homomorphism π : A −→ B between unital C∗-

algebras induces a group homorphism π∗ : K0(A) −→ K0(B) by π∗([E]) =

[E⊗A B].

For a non unital C∗-algebra A, the unital morphism

ε : (a, λ) ∈ Ã = A⊕ lC −→ λ ∈ lC

from the algebra Ã obtained by adjoining a unit to A to the scalars induces

a K-theory map ε∗ : K0(Ã) −→ K0( lC). By definition, K0(A) is the kernel of

ε∗.

3.5.7 Kn of a C∗-algebra (n ≤ 1).

To define Kn(A) (n ∈ IN − {0}) for a C∗-algebra A with unit, consider

the group GLk(A) of invertible elements in Mk(A). Let GL∞(A) be the

union of the GLk(A)’s, where GLk(A) embeds in GLk+1(A) by the map

X −→
(
X 0

0 1

)
. Note that GL∞(A) is a topological group for the inductive

limit topology.

Definition 3.5.8. For n ≧ 1, we set: Kn(A) := πn−1(GL∞(A)).

We thus define a group which is abelian for n ≧ 2, since the homotopy group

πn of a topological group is abelian for n ≧ 1.

Exercise 3.5.9. Show that

(
X 0

0 1

)
and

(
1 0

0 X

)
are in the same connected

component of GL2n(A) for any X ∈ GLn(A). Deduce that K1(A) is abelian.

Exercise 3.5.10. Show that K1(Mn( lC)) = {0}.

Any unital ∗-homomorphism π : A −→ A between unital C∗-algebras yields

a group homorphism π∗ : Kn(A) −→ Kn(B). For a non unital C∗-algebra A,

the group Kn(A) will be the kernel of the map ε∗ : Kn(Ã) −→ Kn( lC).

3.6 Main properties of the topological K-theory for C∗-algebras

The following theorem summarizes the main properties of the K-theory for

C∗-algebras:
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Theorem 3.6.1. The covariant functor A −→ Kn(A) satisfies the following

properties:

(i) (Homotopy invariance). We have (π0)∗ = (π1)∗ : Kn(A) −→ Kn(B) for

any path πt : A −→ B (t ∈ [0, 1]) of unital ∗-homomorphisms from A to

B such that t −→ πt(x) is norm continuous for any x ∈ A;

(ii) (Stability). There is a natural isomorphism Kn(A) ∼= Kn(A ⊗ K(H)),

where K(H) is the algebra of compact operators on a separable infinite

dimensional Hilbert space H;

(iii) For any n ≧ 0, there exists a natural isomorphism βn : Kn(A) −→
Kn+2(A);

(iv) (Six terms exact sequence).Any short exact sequence of C∗-algebras

0 −→ J
i−→ A

p−→ B −→ 0 yields a cyclic exact sequence in K-theory:

K0(J)
i∗−→ K0(A)

p∗−→ K0(B)xδ
yδ

K1(B)
p∗←− K1(A)

i∗←− K1(J)

(v) (Bott periodicity). For any C∗-algebra A, there exists a natural iso-

morhism Ki+n(A)
≈−→ Ki(A⊗C0( IRn));

(vi) (Thom isomorphism). For any continuous action α of IRn by automor-

phisms of the C∗-algebra A, there exists a natural isomorphism

Ki+n(A)
≈−→ Ki(A×α IRn),

where A×α IRn is the crossed product C∗-algebra of A by the action α of

IRn.

Let us make some comments on the proofs.

Property (i) is obvious for n ≥ 1. For n = 0, it follows from the fact that

two nearby projections e, f in a C∗-algebra A are equivalent, i.e. there exists

u ∈ A such that u∗ = e and u∗u = f (henceforth, u : eA −→ fA is an

A-module isomorphism).

Property (ii) is an immediate corollary of (i).

Property (iii) is a theorem, originally proved by Bott. It implies that the

K-theory of a C∗-algebra A reduces to the groups K0(A) and K1(A). For

n = 0, the isomorphism β0 : K0(A) −→ K2(A) is easy to describe: it sends

the class of the module eAn(e = e∗ = e2 ∈Mn(A)) to the class of the loop:
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z ∈ U(1) −→ ze+ (1− e) ∈ GLn(A).

Property (iv) is a consequence of the long exact sequence for the homotopy

groups of a fibration, which reduces here to a cyclic exact sequence in view

of (iii).

Property (v) follows from (iv) for the exact sequence

0 −→ C0(]0, 1[, A)
i−→ C0(]0, 1], A)

p−→ A −→ 0,

where p is the evaluation at 1, since we have Kn(C0(]0, 1], A)) = 0.

Exercise 3.6.2. Show that the path of ∗-morphisms πt : C0(]0, 1], A) −→

C0(]0, 1], A) (t ∈ [0, 1]) defined by πt(f)(s) =

{
f(s− t) if 0 ≤ t < s ≤ 1

0 if 0 ≤ s ≤ t ≤ 1

yields a homotopy between 0 and Id. Deduce that Kn(C0(]0, 1], A)) = 0.

Property (vi) was originally proved by A. Connes [5], and can be reduced to

Bott periodicity (see for instance [7]).

3.7 Kasparov’s picture of K0(A)

In analogy with Atiyah’s description of K0(X) for a compact space X, it

is possible to describe K0(A) for any unital C∗-algebra A from generalized

A-Fredholm operators. The main change consists in replacing the notion of

Hilbert space by that of Hilbert C∗-module.

Definition 3.7.1. Let A be a C∗-algebra. We call Hilbert C∗-module over

A (or Hilbert A-module) any right A-module E equipped with an A-valued

scalar product < ., . > satisfying the following conditions:

(i) < ξ, λη >= λ < ξ, η > and < ξ, ηa >=< ξ, η > a for any ξ, η ∈ E, a ∈ A;

(ii) < ξ, η >=< η, ξ >∗ for any ξ, η ∈ E;

(iii) < ξ, ξ >∈ A+ for any ξ ∈ E and (< ξ, ξ >= 0 =⇒ ξ = 0);

(iv) E is complete for the norm ‖ ξ ‖=‖< ξ, ξ >‖1/2A .

A basic example of Hilbert A-module is the completion HA of the algebraic

direct sum A⊕A⊕A⊕ ... for the norm associated with the A-valued scalar

product
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< (xn), (yn) >=
∑

n≧1

x∗nyn ∈ A. In fact, one can show in analogy with the

Hilbert space theory [11] that the sum of any countably generated Hilbert

A-module with HA is isomorphic to HA.

Exercise 3.7.2. Let X be a compact space. Show that the Hilbert C(X)-

modules are exactly the spaces of continuous sections of continuous fields of

Hilbert spaces over X.

Definition 3.7.3. Let E be a Hilbert A-module. We shall call endomorphism

of E any map T : E −→ E such that there exists T ∗ : E −→ E satisfying:

< Tξ, η >=< ξ, T ∗η > for any ξ, η ∈ E.

An endomorphism of E is automatically A-linear and bounded. We denote by

B(E) the space of all endomorphisms of E; it is a C∗-algebra for the operator

norm. The closed ideal of B(E) generated by the “rank one” operators ξ −→
ξ2 < ξ1, ξ > (ξ1, ξ2 ∈ E) is denoted by K(E); we call it the algebra of compact

operators of the Hilbert A-module E.

Definition 3.7.4. Let A be a unital C∗-algebra and E a countably generated

Hilbert A-module. A generalized A-Fredholm operator on E is by definition an

endomophism P ∈ B(E) such that there exists Q ∈ B(E) with R = I−PQ ∈
K(E) and S = 1−QP ∈ K(E).

3.7.5 Generalized Fredholm A-index and Kasparov’s definition of

K0(A).

Let A be a unital C∗-algebra and consider a generalized A-Fredholm opera-

tor P ∈ B(E). In analogy with the description of the index of a Fredholm

operator given in proposition 1.3.6, we shall define a generalized A-index

IndA(P ) ∈ K0(A). Since E ⊕HA is isomorphic to HA, we may assume, re-

placing P by

(
P 0

0 I

)
if necessary, that E = HA. In analogy with proposition

1.3.6, the generalized A-index IndA(P ) ∈ K0(A) = K0(K ⊗A) is defined by

the formula:
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IndA(P ) =

[
X

(
1 0

0 0

)
X−1

]
−
[(

1 0

0 0

)]
∈ K0(K(HA)) = K0(K ⊗A),

where X ∈ B(HA ⊕HA) is some invertible lift of:

( .
P 0

0
.
P

−1

)
∈ B(HA ⊕HA)/K(HA ⊕HA).

Here, [e] is a shorthand for [eB̃n] for any idempotent e of Mn(B̃). Since

the K-theory class of

[
X

(
1 0

0 0

)
X−1

]
−
[(

1 0

0 0

)]
does not depend on the

choice of such an invertible lift X, the only point that we need to check is

the existence of such a lift. With this aim in mind, consider the element:

X =

(
P + (I − PQ)P PQ− I

I −QP Q

)
∈ B(HA ⊕HA).

It is equal to

(
P 0

0 Q

)
modulo K(HA ⊕HA) and the formula:

(
P + (I − PQ)P PQ− I

I −QP Q

)
=

(
I P

0 I

)(
I 0

−Q I

)(
I P

0 I

)(
0 −I
I 0

)

shows that it is invertible, with inverse:

X−1 =

(
0 I

−I 0

)(
I −P
0 I

)(
I 0

Q I

)(
I −P
0 I

)
=

(
Q I −QP

PQ− I P + (I − PQ)P

)
.

Since we have X

(
1 0

0 0

)
X−1 =

(
I −R2 (I +R)PS

SQ S2

)
, the generalized A-

index Ind−A(P ) ∈ K0(A) will be finally defined by:

IndA(P ) =

[(
I −R2 (I +R)PS

SQ S2

)]
−
[(

1 0

0 0

)]
∈ K0(A).

One can show that the index map P ∈ FredA(HA) −→ IndA(P ) ∈ K0(A)

from the space FredA(HA) of generalized A-Fredholm operators to K0(A)

induces a group isomorphism from π0(FredA(HA)) to K0(A). This leads

Kasparov [12] to define K0(A) as the set of homotopy classes of triples
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(E0,E1, F =

(
0 Q

P 0

)
) where E = E0 ⊕ E1 is a graded Hilbert A-module

and F an element in B(E0 ⊕E1) such that:

F 2 − I =

(
QP − I 0

0 PQ− I

)
∈ K(E0 ⊕E1).

This will be used in section 5.

4 The Atiyah-Singer Index Theorem

4.1 Statement of the theorem

We are now in position to state the Atiyah-Singer index theorem, which com-

putes the analytical index of an elliptic operator P on M from its principal

symbol σ(P ). Note that σ(P ) is a purely topological data which can be viewed

as an element in K0(T ∗M) (see remark after definition 3.3.3).

Theorem 4.1.1 (Atiyah-Singer index theorem). Let P be an elliptic pseu-

dodifferential operator on an n-dimensional compact oriented manifold M

without boundary. Denote by σ(P ) the principal symbol of P , viewed as

an element of the K-theory (with compact support) group K0(T ∗M). Let

π! : H∗(T ∗M) −→ H∗(M) be the integration’s map (in cohomology with

compact support) on the fibre of the canonical projection π : T ∗M −→ M .

Then, we have:

Ind(P ) = (−1)
n(n+1)

2

∫

M

chM (σ(P ))TdC(TM ⊗ lC),

where chM (σ(P )) = π!ch(σ(P )) is the image of ch(σ(P )) ∈ H∗(T ∗M) by π!

The main steps of the proof are the following:

(i) Construction of an analytical map Inda : K0(T ∗M) −→ Z, called the

analytical index, such that Inda(σ(P )) = Ind(P ) for any elliptic pseu-

dodifferential operator P on M with principal symbol σ(P ) ∈ K0(T ∗M);

(ii) Construction of a topological map Indt : K0(T ∗M) −→ K0(T ∗ IRN ) = Z,

called the topological index, by using an embedding M −→ IRN ;
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(iii) Proof of the equality Inda = Indt;

(iv) Computation of the topological index Indt by using the Chern character,

to get the cohomological formula:

Indt(x) = (−1)
n(n+1)

2

∫

M

chM (x)TdC(TM ⊗ lC).

4.2 Construction of the analytical index map

Let P : C∞(M,E) −→ C∞(M,F ) be an elliptic operator of order m on M ,

and consider its principal symbol p = σ(P ) ∈ C∞(T ∗M,Hom(π∗E, π∗F )),

which is a bounded function in Sm(T ∗M,Hom(π∗E, π∗F )). By ellipticity,

there exists a bounded map q ∈ S−m(T ∗M,Hom(π∗F, π∗E)) such that

pq − I and qp− I are bounded functions in S−1(T ∗M,Hom(π∗F, π∗F )) and

S−1(T ∗M,Hom(π∗E, π∗E)) respectively. Note that the index of P only de-

pends on the homotopy class of σ(P ):

Proposition 4.2.1. Let P0, P1 : C∞(M,E) −→ C∞(M,F ) be two elliptic

operators of order m on M . Assume that there exists a homotopy inside the

symbols of elliptic operators of order m between the principal symbols

p0 = σ(P0), p1 = σ(P1) ∈ C∞(T ∗M,Hom(π∗E, π∗F ))

of P0 and P1. Then, we have: Ind(P0) = Ind(P1).

Proof. Any homotopy t ∈ [0, 1] −→ p(t) ∈ C∞(T ∗M,Hom(π∗E, π∗F )) in-

side the symbols of elliptic operators of order m between p0 and p1 yields

by pseudo-differential calculus a continuous field of Fredholm operators

P (t) : Hs+m(M,E) −→ Hs(M,F ) with P (0) = P0 and P (1) = P1. By

homotopy invariance of the index, we get Ind(P0) = Ind(P1). QED

Let P : C∞(M,E) −→ C∞(M,F ) be an elliptic operator of order m on

M , and choose a homogeneous function h of degree one on T ∗M which is

positive and C∞ outside the zero section. By using proposition 4.2.1 we can

show that, for any pseudodifferential operator Pτ : C∞(M,E) −→ C∞(M,F )

with principal symbol pτ (x, ξ) = p(x, τ ξ
h(ξ)), we have:

Ind(Pτ ) = Ind(P ) for any τ > 0 sufficiently large.
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In other words, to determine the index of elliptic operators, it suffices to

study operators with polyhomogeneous symbols of order 0. This leads to the

following definition of the analytical index map. We shall use the following

notation:

Notation. If p ∈ C(T ∗M,Hom(π∗E, π∗F )) is a continuous section of the

bundleHom(π∗E, π∗F ) such that the set {(x, ξ) ∈ T ∗M ; p(x, ξ) is not invertible}
is compact, we shall set: pτ (x, ξ) = p(x, τ ξ

h(ξ)). We thus define a homogeneous

continuous symbol pτ which is invertible for τ sufficiently large.

Proposition and definition 4.2.2. Let p ∈ C(T ∗M,Hom(π∗E, π∗F )) be

such that the set of (x, ξ) ∈ T ∗M where p(x, ξ) is not invertible is compact.

(i) We have Ind(P1) = Ind(P2) for any pair P1, P2 : C∞(M,E) −→
C∞(M,F ) of elliptic pseudodifferential with principal symbols pi(x, ξ)

(i = 1, 2) satisfying: Sup
x,ξ
‖pτ (x, ξ)−1pi(x, ξ) − I‖ < 1 for τ > 0 large

enough;

(ii) Set Inda(p) := Ind(P ), where P : C∞(M,E) −→ C∞(M,F ) is any

elliptic pseudo-differential operator with principal symbol p(x, ξ) satisfying

Sup
x,ξ
‖pτ (x, ξ)−1

p(x, ξ) − I‖ < 1 for τ > 0 large enough. Then, Inda(p) doesn’t depend

on the choice of h and τ . We call Inda(p) the analytical index of p;

(iii) We have Inda(p) = Ind(P ) if P is an elliptic pseudodifferential operator

of order 0 with polyhomogeneous principal symbol p of order 0;

(iv) If t ∈ [0, 1] −→ pt ∈ C(T ∗M,Hom(π∗(E), π∗(F ))) is a continuous path

such that there exists a compact K in T ∗M with pt(x, ξ) invertible for all

t when (x, ξ) 6∈ K, then Inda(pt) is independent of t.

By (iv), the map p −→ Inda(p) defined in (ii) yields a K-theory map Inda :

K0(T ∗M) −→ Z, called the analytical index map. Let us show that this

K-theory map can be defined in a purely topological way.

4.3 Construction of the topological index map

Let M be a compact oriented manifold without boundary of dimension n.

There is a natural way to send K0(T ∗M) ∼= K0(TM) to K0(pt) = Z that

we shall now describe. Choose an imbedding i : M −→ IRN of M into



Index Theorems and Noncommutative Topology 40

IRN (such an embedding always exist) and denote by di : TM −→ T IRN

the corresponding proper imbedding of TM into T IRN . The normal bun-

dle to this embedding identifies wit the pull-back to TM of N ⊕ N , where

N is the normal bundle to the imbedding i : M −→ IRN . Let us identify

N ⊕N with a tubular neighbourhood W of TM in T IRN . Then, the Thom

isomorphism for hermitian complex vector bundles (cf. [10]) yields a map

K0(TM) −→ K0(N ⊕N) ∼= K0(W ).

Since W is an open subset of T IRN , the natural inclusion C0(W ) −→
C0(T IRN ) yields a map K0(W ) −→ K0(T IRN ) and hence, by composition,

a map:

i! : K0(TM) −→ K0(T IRN ) = K0( IR2N ).

Note that any smooth proper embedding i : M −→ V of M into a smooth

manifold V yields in the same way a natural map i! : K∗(TM) −→ K∗(TV )

which does not depend on the factorization of di : TM −→ TV through the

zero section associated with a tubular neighbourhood of TM into TV . Since

IR2N = IRN ⊕ IRN = lCN −→ pt can be considered as a complex vector

bundle over a point, we have a Thom isomorphism K0(pt) −→ K0( IR2N )

whose inverse is just the Bott periodicity isomorphism: β : K0( IR2N ) −→
K0(pt) = Z. Taking V = IR2N for some large enough N , the composition

map:

Indt = β ◦ i! : K0(T ∗M) ∼= K0(TM) −→ Z

is called the topological index. One can prove that it does not depend on the

choice of the imbedding i : M −→ IRN . The main content of the Atiyah-

Singer index theorem is in fact the equality:

Inda = Indt : K0(T ∗M) −→ Z,

which allows computing the analytical index of an elliptic operator by a

cohomological formula.

4.4 Coincidence of the analytical and topological index maps

The proof of the equality Inda = Indt is based on the following two properties

of the analytical index:

Property 1. For M = pt, the analytical index Inda : K0(pt) −→ Z is the

identity.
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Property 2. For any smooth embedding i : M −→ V between compact

smooth manifolds, the following diagram is commutative:

K∗(TM)
i!−→ K∗(TV )

Inda ց ւ Inda

Z

To check that these properties imply the equality Inda = Indt, choose an

embedding i : M −→ IRN ⊂ SN = IRN∪{∞} and denote by j : {∞} −→ SN

the inclusion of the point ∞. By property 2, we have for any x ∈ K0(TM):

Inda(x) = Inda(i!x) = Inda(j!
−1i!x)

and, since Inda ◦ j!−1 = j!−1 by property 1, and j!−1 is just the Bott peri-

odicity isomorphism on K0( IRN ), we get:

Inda(x) = j!−1 ◦ i!(x) = Indt(x).

Exercise 4.4.1. Check directly property 1.

To prove property 2, consider a tubular neighbourhood of M in V , which is

diffeomorphic to the normal bundle N of M in V . To prove that

Inda(x) = Inda(i!x) for any x ∈ K 0 (TM ),

one can show that it suffices to prove that Inda(x) = Inda(j!x), where j :

M −→ N is the inclusion of the zero section. We may also replace (cf. [16])

the principal Ok-bundle N = P ×Ok
IRk by the associated sphere bundle

SN = P ×Ok
Sk, where Ok acts on Sk by trivially extending the natural

representation on IRk to IRk+1 = IRk × IR and then restricting to the unit

sphere. In other word, we may compactify the fibre of N . If j : M −→ SN

denotes the natural inclusion, we have for any x ∈ K0(TM) ∼= K0(T ∗M):

j!(x) = x⊗ [D],

where [D] ∈ KOk
(T ∗Sk) is the equivariant K-theory class of the de Rham-

Hodge Ok-operator d+ d∗ : Λeven −→ Λodd. Here, the product:

K(T ∗M)⊗KOk
(T ∗Sk) −→ K(T ∗SN )
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is naturally defined by using a splitting T ∗SN = π∗(T ∗M)⊕T (SN/M), where

T (SN/M) = T ∗SN/π∗(T ∗M) denotes the tangent spaces along the fibres of

the projection π : SN −→M , the obvious inclusion

K0k
(T ∗Sk) −→ K0k

(P × T ∗Sk) −→ K(P ×Ok
T ∗Sk) = K(T (SN/M)),

and the external product: K(T ∗M)⊗K(T (SN/M)) −→ K(T ∗SN ).

In this setting, property 2 follows from the multiplicativity property for

sphere bundles:

Proposition 4.4.2. Let S be an Sk-bundle over a compact manifold M . For

any x ∈ K(T ∗M) and [P ] ∈ KOk
(T ∗Sk), we have:

Inda(x.[P ]) = Inda(x.IndOk
(P )),

where IndOk
(P ) ∈ R(Ok) is the equivariant index of the Ok-operator P .

Here, the R(Ok)-module structure on K(T ∗M) (which is a K(M)-module in

an obvious way) comes from the natural morphism R(Ok) −→ K(M).

The equivariant index of an Ok-operator P is heuristically defined as the

difference Ind0k
(P ) = [Ker P ]− [Ker P ∗] of Ok-representations.

Since the equivariant index of the de Rham-Hodge Ok-operator d + d∗ :

Λeven −→ Λodd on Sk is equal to 1 ∈ R(Ok) (see for instance [16], p. 253), we

get from proposition 4.4.2:

Inda(j!(x)) = Inda(x⊗ [D]) = Inda(x.IndOk
(D)) = Inda(x)

for any x ∈ K0(TM) ∼= K0(T ∗M), and property 2 is proved. The technical

proof of proposition 4.4.2 is modelled on the proof of the multiplicativity of

the analytical index:

(1) Inda([P ]⊗ [Q]) = Inda(P )Inda(Q),

for any pair of first order elliptic operators P and Q on compact manifolds

M and N . Since Inda([P ] ⊗ [Q]) = Inda(D) where D is the sharp product:

D =

(
P ⊗ 1 −1⊗Q∗

1⊗Q P ∗ ⊗ 1

)
,

this multiplicative property (1) is straightforward.



Index Theorems and Noncommutative Topology 43

4.5 Cohomological formula for the topological index

Let π : E −→M be a complex vector bundle of rank n over a smooth manifold

M . Denote by i the zero section and consider the following diagram:

K0(M)
i!=Thom iso, in K−theory−−−−−−−−−−−−−−−−−−−−−−→ K0(E)ych

ych
Hev(M)

i!=Thom iso, in cohomology−−−−−−−−−−−−−−−−−−−−−−→ Hev(E)

where i! : Hev(M) −→ Hev(E) is the inverse of the “integration on the fibres”

π! : Hev(E) −→ Hev(M), which is an isomorphism in cohomology. It turns

out that this diagram is not commutative, since the cohomology class

τ(E) = π! ch(i!(1)) ∈ Hev(M)

is not trivial in general. This cohomology class really measures the defect of

commutativity in the above diagram, since:

Proposition 4.5.1. For any x ∈ K0(M), we have: ch(i!(x)) = i!(ch(x)τ(E)).

Exercise 4.5.2. Check proposition 4.5.1.

The computation of the obstruction class τ(E) follows from the formula:

χ(E)τ(E) = i∗i!τ(E) = ch([ΛevenE]− [ΛoddE]),

where χ(E) is the Euler class of E. If E is a complex bundle of dimension

k over M , we get from a formal splitting E ∼= L1 ⊕ ... ⊕ Lk of E into line

bundles:

χ(E)τ(E) =

( k∏

i=1

c1(Li)

)
τ(E) =

( k∏

i=1

xi

)
τ(E),

where xi = c1(Li). On the other hand, since Λp(E⊕F ) =
⊕

i+j=p

Λi(E)⊗Λj(F ),

we get from the multiplicativity of the Chern character:

ch([ΛevenE]− [ΛoddE]) =
k∏

i=1

(1− exi).

We deduce that: τ(E) =
k∏

i=1

1− exi

xi
= (−1)k

k∏

i=1

(
1− e−(−xi)

−xi

)
= (−1)dim(E)TdC(E)−1,

where E is the conjugate of E and the Todd class TdC(E) is defined by the
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formal power series x
1−e−x , i.e. TdC(E) =

k∏

i=1

(
xi

1− e−xi

)
.

We are now in position to give a cohomological formula for the topological

index:

Theorem 4.5.3. Let M be an n-dimensional compact oriented manifold with-

out boundary. Denote by π! : H∗(T ∗M) −→ H∗(M) the integration’s map (in

cohomology with compact support) on the fiber of the canonical projection

π : T ∗M −→M. Then, we have for any x ∈ K0(T ∗M):

Indt(x) = (−1)
n(n+1)

2

∫

M

chM (x)TdC(TM ⊗ lC),

where chM (x) = π!ch(x) is the image of ch(x) ∈ H∗(T ∗M) by π!.

Proof. In the following diagram, where N is the normal bundle to some

inclusion M →֒ IRn as before:

K0(TM)
i!−→ K0(N ⊕N) ∼= K0(W ) −→ K0( IR2N ) −→ K0(pt) = Z

↓ ch ↓ ch ↓ ch id ↓
Hev(TM)

i!−→ Hev(N ⊕N) ∼= Hev(W ) −→ Hev( IR2N )
q!−→ H0(pt) = Z

the two squares on the right commute since τ( lCN ) = 1 so that we have

Indt(x) = q!i!(ch(x)τ(N ⊕ N)) for any x ∈ K0(T ∗M). Since TM ⊕ N is

trivial and TM ⊗ lC is self-conjugate, we get:

τ(N ⊗ lC) = τ(TM ⊗ lC)−1 = (−1)nTdC(TM ⊗ lC)

and hence:

Indt(x) = (−1)n
∫

TM

ch(x)TdC(TM ⊗ lC).

Taking into account the difference between the orientation of TM induced

by the one of M and the ”almost complex” orientation of T (TM), we get

from the above formula by using the Thom isomorphism in cohomology:

Indt(x) = (−1)
n(n+1)

2

∫

M

chM (x)TdC(TM ⊗ lC). QED
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One obtain various index theorems by applying the above formula to x = σ,

the symbol of an elliptic pseudodifferential operator.

Exercise 4.5.4. Show that the index of any elliptic differential operator P on

an odd-dimensional compact manifold M is zero (Hint: use the Atiyah-Singer

index theorem together with the formulas: c∗[TM ] = −[TM ], c∗(σ(P )) =

σ(P ) ∈ K0(T ∗M) where c is the diffeomorphism ξ ∈ TM −→ −ξ ∈ TM).

Exercise 4.5.5. By using the Atiyah-Singer index formula for the de Rham

operator on a compact oriented manifold M , prove the equality:

dim(M)∑

i=0

(−1)idimH i(M, IR) =

∫

M

χ(TCM).

4.6 The Hirzebruch signature formula

From the Atiyah-Singer formula, we get the Hirzebruch formula:

Theorem 4.6.1. The signature σ(M) of any 4k oriented compact smooth

manifold M is given by:

σ(M) =

∫

M

L(M),

where L(M) is the Hirzebruch-Pontrjagin class defined from a formal split-

ting TM ⊗ lC =

2k⊕

i=1

(Li ⊕ Li) into complex line bundles by: L(M) =

22k
2k∏

i=1

c(Li)/2

th(c(Li)/2)
.

Proof. Let D+ be the signature operator on M (cf. 2.3.2.). Since we have:

[σ(D+)] = [(Λ+(T ∗M ⊗ lC), Λ−(T ∗M ⊗ lC), i(ext(ξ) − int(ξ)))],

we get from a formal splitting TM ⊗ lC =

2k⊕

i=1

(Li ⊕ Li) of TM ⊗ lC into

complex line bundles, by setting xi = c(Li):
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chM (σ(D+)) =
ch([Λ+(T ∗M ⊗ lC)]− [Λ−(T ∗M ⊗ lC)])

χ(TM)

=
2k∏

i=1

ch([Li]− [Li])

xi
=

2k∏

i=1

e−xi − exi

xi
= 22k

2k∏

i=1

exi − e−xi

2xi

= 22k
2k∏

i=1

xi/2

th(xi/2)

( 2k∏

i=1

xi/2

sh(xi/2)

)−2

,

and hence:

chM (σ(D+))TdC(TM ⊗ lC) =

= 22k
2k∏

i=1

xi/2

th(xi/2)

( 2k∏

i=1

xi/2

sh(xi/2)

)−2( 2k∏

i=1

xi/2

sh(xi/2)

)2

= 22k
2k∏

i=1

xi/2

th(xi/2)
= L(M).

Since the signature of M is equal to Ind(D+) by theorem 2.3.6, we get from

the Atiyah-Singer index formula:

σ(M) =

∫

M

chM (x)TdC(TM ⊗ lC) =

∫

M

L(M). QED

5 The index theorem for foliations

5.1 Index theorem for elliptic families

5.1.1 Elliptic families. Consider a smooth fibration p : M −→ B with

connected fiber F on a compact manifold M . For each y ∈ B, set Fy = p−1(y)

and denote by T ∗
F (M) the bundle dual to the bundle TF (M) of vectors tangent

to the fibres of the fibration. Let q : T ∗
F (M) −→ M be the projection map

and consider a family P = (Py)y∈B of zero order pseudodifferential operators:

Py : C∞(Fy, E
0) −→ C∞(Fy, E

1)

on the fibres of the fibration p : M −→ B, where E = E0 ⊕ E1 is a Z/2Z

graded hermitian vector bundle over M .

Definition 5.1.2. The family (Py)y∈B is said to be continuous if the map

P defined on C∞(M,E0) by Pf(x) = (Pyfy)(x) (y = p(x), fy = f |Fy) sends

C∞(M,E0) into C∞(M,E1).
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The principal symbol of such a continuous family P = (Py)y∈B is by definition

the family σ(P ) = (σ(Py))y∈B of the symbols of the Py’s. It can be viewed as a

vector bundle morphism σ(P ) : q∗(E0) −→ q∗(E1). The family P = (Py)y∈B
is said to be elliptic if all the Py’s are elliptic. In this case, the principal

symbol σ(P ) yields a K-theory class [σ(P )] ∈ K0(T ∗
FM).

5.1.3 Analytical index of a family of elliptic operators. Let P be

as above. By working locally as in the case of an elliptic operator, we can

prove the existence of a continuous family Q = (Qy)y∈B of zero order pseu-

dodifferential operators such that PyQy − I = Ry and QyPy − I = Sy

are continuous families of infinitely smoothing operators. In particular, the

family P = (Py)y∈B gives rise to a continuous field of Fredholm operators

Py : L2(Fy, E
0) −→ L2(Fy, E

1), and the index Ind(P ) ∈ K0(B) of this family

of Fredholm operators makes sense by theorem 3.2.1.

5.1.4 Topological index of a family of elliptic operators. On the other

hand, the principal symbol σ(P ) yields a K-theory class [σ(P )] ∈ K0(T ∗
FM).

To define a topological index Indtop : K0(T ∗
FM) −→ K0(B), let us choose

a smooth map f : M −→ B × IRN which reduces for any y ∈ B to a

smooth embedding fy : Fy −→ {y}× IRN . Such a map gives rise to a smooth

embedding f∗ : TFM −→ B × T IRN with normal bundle N ⊕ N , where

Ny is the normal bundle of fy(Fy) in {y} × IRN , pulled back to M . Since

Ny ⊕Ny ≃ Ny ⊗ lC, we have a well defined Gysin map:

p! : K0(T ∗
FM) −→ K0(N⊗ lC) −→ K0(B×T IRN ) = K0(B× IR2N ) −→ K0(B),

where the last map on the right is the Bott periodicity isomorphism. We call

topological index the map:

Indtop = p! : K0(T ∗
FM) −→ K0(B),

which is well defined and does not depend on the choice of f : M −→ B× IRN .

At this point, it is almost clear that the proof of the Atiyah-Singer index

theorem for elliptic operators on compact manifolds extends to the framework

of fibrations to give the following index theorem:

Theorem 5.1.5. Let p : M −→ B be a smooth fibration with fiber F on

a compact manifold M , and P = (Py)y∈B be a continuous family of elliptic
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zero order pseudodifferential operators on the fibres Fy = p−1(y). Then, we

have:

(i) Ind(P ) = Indtop([σ(P )]) ∈ K0(B);

(ii) ch(Ind(P )) = (−1)
n(n+1)

2 π!(ch([σ(P )])TdC(TM)) ∈ H∗(B),

where n = dim(F ) is the dimension of the fibre and π : T ∗
FM −→ B is the

natural projection.

For a detailed proof of this result, see [2].

5.2 The index theorem for foliations

5.2.1 Foliations. Let M be a smooth n-dimensional compact manifold. Re-

call that a smooth p-dimensional subbundle F of TM is called integrable if

every x ∈M is contained in the domain U of a submersion p : U −→ IRn−p

such that Fy = Ker(p∗)y for any y ∈ U . A p-dimensional foliation F on M is

given by an integrable p-dimensional subbundle F of TM . We call leaves of

the foliation (M,F ) the maximal connected submanifolds L of M such that

Tx(L) = Fx for any x ∈ L. In any foliation (M,F ), the equivalence relation on

M corresponding to the partition into leaves is locally trivial, i.e. every point

x ∈M has a neighborhood U with local coordinates (x1, ..., xn) : U −→ IRn

such that the partition of U into connected components of leaves corresponds

to the partition of IRn = IRp× IRq into the plaques IRp×{y}. We shall called

p = dim(F ) the dimension of the foliation, and q = n− dim(F ) = codim(F )

the codimension of F . For instance, any smooth fibration p : M −→ B with

connected fiber on a compact manifold defines a foliation on M whose leaves

are the fibres p−1(y), y ∈ B. If θ is an irrational number, the flow of the

differential equation dy− θdx = 0 on the two-dimensional torus M = IR2/Z2

defines a codimension 1 foliation Fθ on M called the irrational Kronecker

foliation.

Exercise 5.2.2. Show that each leaf of the irrational Kronecker foliation Fθ

on the 2-dimensional torus M = IR2/Z2 is non compact and dense. Let M/F

be the quotient of M by the equivalence relation corresponding to the partition

into leaves. Show that the quotient topology on M/F is trivial (the only open

subsets are M/F and ∅).
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5.2.3 Holonomy of a foliation. Let γ : [0, 1] −→ M be a continuous

path on a leaf L of F , and consider two q-dimensional submanifolds T, T ′

transverse to the foliation and whose interiors contain respectively the source

x = γ(0) and the range y = γ(1) of γ. By “following the leaves” through

some small enough tubular neighborhood of γ([0, 1]), we get from γ a local

diffeomorphism ϕγ : Dom(ϕγ) ⊂ T −→ T ′ with x = s(γ) ∈ Dom(ϕγ). The

holonomy germ of γ is by definition the germ h(γ) = [ϕγ ]x of ϕγ at x = s(γ).

Two paths γ1, γ2 : [0, 1] −→ L having the same source x = s(γ1) = s(γ2) and

the same range y = r(γ1) = r(γ2) are said holonomy equivalent (and we write

γ1 ∼ γ2) if there exist transverse submanifolds T at x and T ′ at y such that

h(γ1) = h(γ2). We thus define an equivalence relation on the set of all paths

drawn on the leaves. The holonomy groupoid of the foliation is by definition

the set G of all equivalence classes. Any γ ∈ G is thus the holonomy class of a

path on some leaf, with source x (denoted by s(γ)) and range y (denoted by

r(γ)). For any x ∈M , we shall set Gx = {γ ∈ G|r(γ) = x}. The composition

of paths induces a natural structure of groupoid on G, and it can be shown

that G has the structure of a smooth (possibly non Hausdorff) manifold. For

more information on the holonomy groupöıd G of (M,F ), see [3].

Exercise 5.2.4. Show that the holonomy groupoid of the Kronecker foliation

Fθ on the 2-dimensional torus M = IR2/Z2 identifies with M × IR. Describe

its groupoid structure and its smooth structure.

5.2.5 C∗-algebra of a foliation. For a fibration, the space of leaves is a nice

compact space which identifies with the base of the fibration. However, for

a foliation with dense leaves such as the Kronecker foliation Fθ, the space of

leaves can be very complicated although the local picture is that of a fibration.

A. Connes [3] suggested describing the topology of the “leafspace” M/F of

any foliation (M,F ) by a C∗-algebra C∗(M,F ) whose noncommutativity

tells us how far the foliation lies from a fibration. This C∗-algebra, which

describes the non commutative space M/F , is obtained by quantization of

the holonomy groupoid. More precisely, C∗(M,F ) is defined as the minimal

C∗-completion of the algebra of continuous compactly supported sections

Cc(G,Ω
1/2) of the bundle Ω

1/2
γ = Ω

1/2
s(γ) ⊗ Ω

1/2
r(γ) of half densities along the

leaves of the foliation, endowed with the following laws:
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(f ∗ g)(γ) =
∫

γ1γ2=γ
f(γ1)g(γ2)

f∗(γ) = f(γ−1).

When the foliation comes from a fibration p : M −→ B, the C∗-algebra

C∗(M,F ) identifies with C(B)⊗K(L2(F )), where K(H) denotes the algebra

of compact operators on the Hilbert space H. In the case of the Kronecker

foliation Fθ, we have C∗(T2, Fθ) ≃ Aθ⊗K(H) where H is a separable infinite

dimensional Hilbert space and Aθ the irrational rotation algebra generated

by two unitaries U and V in H satisfying the commutation relation V U =

exp(2iπθ)UV .

5.2.6 Elliptic operators along the leaves of a foliation. Let (M,F ) be a

smooth foliation on a compact manifold M and E0, E1 two smooth complex

vector bundles over M . A differential operator elliptic along the leaves of

(M,F ) acting from the sections of E0 to the sections of E1 is a differential

operator D : C∞(M,E0) −→ C∞(M,E1) which restricts to the leaves and

is elliptic when restricted to the leaves. Its principal symbol σ(D)(x, ξ) ∈
Hom(E0

x, E
1
x) is thus invertible for any non zero ξ ∈ F ∗

x and yields a K-

theory class

[σ(D)] ∈ K0(F ∗).

Since a foliation is locally a fibration, the notion of elliptic pseudodifferential

operator along the leaves of (M,F ) can be defined in a natural way. As in

the case of fibrations, it generalizes the notion of differential elliptic operator

along the leaves.

5.2.7 Analytical index of an operator elliptic along the leaves. As-

sume for simplicity that the foliation (M,F ) has no holonomy and consider an

elliptic pseudodifferential operator P of order zero along the leaves of (M,F ),

acting from the sections of E0 to the sections of E1. The restriction PL of P

to the leaf L is a bounded operator in the Hilbert spaceHL = L2(L,E0⊕E1).

Moreover, the family (PL)L∈M/F yields in a natural way an endomorphism of

a Hilbert C∗(M,F )-module that we now describe. Let E be the Hilbert com-

pletion of the linear span of the 1/2 sections of the field Hx = L2(Gx, E
0⊕E1)

that have the from x −→
∫
Gx

(ξ ◦ γ)f(γ) where ξ is a basic 1/2 section of H

and f ∈ C∗(M,F ) an element with a square integrable restriction to Gx for
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any x ∈M . There is an obvious structure of C∗(M,F )-module on E. More-

over, since the coefficient < ξ, η > (γ) =< ξr(γ) ◦ γ, ηs(γ) > is required to

be in C∗(M,F ) for any pair ξ, η of basic 1/2 sections of H, the C∗(M,F )-

valued scalar product < ξ, η > of two elements in E is well defined, and it

is straightforward to check that E is a Hilbert C∗(M,F )-module (see [4] for

more details).

Exercise 5.2.8. Show that the family (PL)L∈M/F yields an endomorphism

P of the C∗(M,F )-module E.

By using the local construction of a parametrix for families of elliptic opera-

tors, one can show as in the case of families the existence of an endomorphism

Q of E such that PQ− I ∈ K(E) and QP − I ∈ K(E). It follows that P is a

generalized C∗(M,F )-Fredholm operator, and hence has an analytical index:

IndC∗(M,F )(P ) ∈ K0(C
∗(M,F )).

5.2.9 The index theorem for foliations. To compute IndC∗(M,F )(P ) we

shall define, as in the case of fibrations, a topological index:

Indt : K0(F ∗) −→ K0(C
∗(M,F ))

by choosing an auxiliary embedding i : M −→ IR2m. Let N be the total

space of the normal bundle to the leaves (i.e. Nx = i∗(Fx)⊥ for the Euclidean

metric) and consider the product manifold M× IR2m foliated by the L×{t}’s
(L = leaf of F, t ∈ IR2m). The map (x, ξ) ∈ N −→ (x, i(x) + ξ) ∈M × IR2m

sends a small neighborhood of the zero section of N into an open transversal

T to the foliation F̃ on M × IR2m. Putting T inside a small open tubular

neighborhood Ω in M × IR2m we get, from the inclusion of C∗(Ω, F̃ ) ∼=
C0(T )⊗K(H) into C∗(M × IR2m, F̃ ), a K-theory map:

K0(C0(T )) = K0(C0(T )⊗K(H)) = K0(C
∗(Ω, F̃ )) −→ K0(C

∗(M× IR2m, F̃ )).

Since we have, by Bott periodicity:

K0(C
∗(M × IR2m, F̃ )) = K0(C

∗(M,F ) ⊗C0( IR2m)) ∼= K0(C
∗(M,F )),

we get by composition a K-theory map:
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Indt : K0(F ∗) ∼= K0(N) ∼= K0(T ) = K0(C0(T )) −→ K0(C
∗(M,F )).

This map, which does not depend on the choices made, is called the topological

index.

Theorem 5.2.9. (Index theorem for foliations). For any zero order ellip-

tic pseudodifferential operator P along the leaves of a foliation (M,F ) with

principal symbol σ(P ) ∈ K0(F ∗), we have:

IndC∗(M,F )(P ) = Indt(σ(P )) ∈ K0(C
∗(M,F )).

For a proof of this result, see [6]. When the foliation (M,F ) has an invariant

transverse measure Λ, there exist a trace τΛ on C∗(M,F ) which yields a map

from the finite part of K0(C
∗(M,F )) generated by trace-class projections in

Mn(C
∗(M,F )) to IR. This trace is given by:

τΛ(k) =

∫

M/F

Trace(kL)dΛ(L) (k ∈ C∞
c (G,Ω1/2)),

where Trace(kL) is viewed as a measure on the leaf manifold. For a zero

order elliptic pseudodifferential operator P along the leaves of (M,F ), one

can show that IndC∗(M,F )(P ) belongs to the finite part of K0(C
∗(M,F )). In

this case, we get from theorem 5.2.9 (see [3] for the original proof):

Theorem 5.2.10. (Measured index theorem for foliations). Let (M,F ) be

a p-dimensional smooth foliation on a compact manifold M . Assume that

(M,F ) has a holonomy invariant transverse measure Λ and denote by [Λ]

the associated Ruelle-Sullivan current. For any zero order elliptic pseudodif-

ferential operator P along the leaves with principal symbol σ(P ) ∈ K0(F ∗),

we have:

τΛ(IndC∗(M,F )(P )) = (−1)
p(p+1)

2 < ch(σ(P ))TdC(FC), [Λ] > .

For two-dimensional leaves, this theorem gives in the case of the leafwise de

Rham operator:

β0 − β1 + β2 =
1

2π

∫
KdΛ,

where the βi are the Betti numbers of the foliation and K is the Gaussian

curvature of the leaves. If the set of compact leaves is negligible, we have

β0 = β2 = 0, and the above relation shows that
∫
KdΛ ≤ 0. It follows that

the condition
∫
KdΛ > 0 implies the existence of compact leaves.
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