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Introduction

These lectures are intended for graduate students in mathematics or physics who need some basic
concepts in differential geometry, global analysis, operator algebras and pseudodifferential operators
in view of understanding how these are used in quantum field theory.

Far from being complete, these notes offer a first guide for the layperson, suggesting further ref-
erences for the interested reader. The list of references suggested at the beginning of each section is
also far from complete and is just meant to give the reader a first hint of the (often huge) literature
on the subject. I have mostly chosen to refer to text books and survey type articles, in order to limit
the number of references.
Because of lack of space, I unfortunately have had to leave out numerous examples that illustrate
the sometimes rather abstract concepts presented here. The last chapter somewhat compensates for
this lack of example by illustrating in Yang-Mills, Seiberg-Witten and string theory how the various
concepts introduced in the previous chapter can come into play to investigate the structure of the
configuration and moduli spaces.

For the sake of simplicity, I chose to introduce the concepts of manifold and vector bundle in the
simplest infinite dimensional setting, namely the Hilbert setting, leaving aside the more subtle con-
cepts needed in the Fréchet setting. A more general infinite dimensional setting is described in [26].
The Hilbert setting offers various simplifications; we have the very useful implicit function theorem
at hand and any closed subspace of a Hilbert space splits the Hilbert space as a direct sum of this
subspace with its orthogonal complement. Also, a partition of unity can be defined on a Hilbert
manifold, which is not always the case on Banach manifolds.
In fact the most appropriate setting for our needs is the I.L.H. setting, namely the inverse limit of
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Hilbert spaces [41] which we shall only briefly mention in the applications at the end of these notes.

These notes start at a leisurly pace but the material gets denser as one goes along, relying on
the fact that the reader who has read the beginning chapters has got acquainted with the geometric
concepts enough to be able to use them rather loosely in the last chapters.
The present lecture notes are organized in five chapters; the first three are dedicated to prerequisites
in differential geometry (including infinite dimensional Banach structures), chapter 4 to operators
and operator algebras of different types, including pseudodifferential operators and a brief incursion
into index theory. Chapter 5 is dedicated to the geometry of configuration and moduli spaces one
comes across in Yang-Mills, Seiberg-Witten and string theory.

Table of Contents

• Chapter 1: Manifolds, Lie algebras and Lie groups

• Chapter 2: Vector bundles and tensor fields

• Chapter 3: Principal bundles

• Chapter 4: Fredholm operators and elliptic operators on closed manifolds

• Chapter 5: Configuration and moduli spaces

1 Manifolds, Lie algebras and Lie groups

1.1 Banach vector spaces

Useful references are [5], [9], [30], [47], [54].

Recall that a Banach vector space (we shall say Banach space for short) is a vector space equipped
with a norm for which it is closed.

Definition: Let E and F be two Banach spaces and U an open subset of E. A map f : E → F is
differentiable at a point x0 of U provided there exists a continuous linear map L : E → F and a map
φ : U ⊂ E → F defined on a neighborhood U of 0 ∈ E such that

f(x0 + y) = f(x0) + L(y) + φ(y)

with limy→0
‖φ(y)‖F
‖y‖E

= 0, where ‖·‖E is the norm on E and ‖·‖F the norm on F . Then L is a uniquely
defined map, called the differential at point x0 and denoted by Dx0f .

The space L(E,F ) of continuous linear maps from E to F is also a Banach space when equipped

with the norm ‖|L‖| := supu6=0
‖Lu‖F
‖u‖E

.

Definition: Let E and F be two Banach spaces and U an open subset of E. The map f : U ⊂ E → F
is of class C1 on U provided f is differentiable at any point of U and the map:

Df : U → L(E,F )

x 7→ Dxf
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is continuous.

Indentifying L (L(E,L (E, · · · (E,F ) · · · , F )F ) –where E arises k times– with the Banach space
Lk(E,F ) of k-linear maps from Ek to F , we can define the notion of Ck differentiability.

Definition: A differentiable map f : U ⊂ E → F is of class Ck provided Df is of class Ck−1.

Definition: Let E and F be two Banach spaces and U , V two open subsets of E and F , re-
spectively. A differentiable map f : U → V is a diffeomorphism whenever it is one to one and onto
and its inverse map is differentiable. It is a Ck diffeomorphism whenever it is a diffeomorphism and
both f and its inverse f−1 are of class Ck.

The following well-known results in Banach spaces will be used later in these notes.

Local inverse function theorem: Let E and F be Banach spaces, U an open subset of E and
f : U → F a Ck map for some k ≥ 1. If for some point x0 ∈ U the map Dx0f : E → F is an
isomorphism then there exists a neighborhood W of x0 such that the restriction f|W : W → f(W ) of
f to W is a Ck diffeomorphism.

Hahn-Banach theorem: Let F ⊂ E be a linear subspace of E s.t. F̄ 6= E. Then there is a
continuous linear form L on E such that L(u) 6= 0 ∀u ∈ F .

Applying this result to the vector space F = 〈u0〉 generated by some u0 ∈ E yields the follow-
ing:

Corollary: Let u0 6= 0 ∈ E, where E is a Banach space. Then there is a continuous linear
form L on E such that L(u0) 6= 0.

Another fundamental result for the following is the

Open mapping theorem: Let E and F be two Banach spaces. A continuous linear map L : E → F
which is onto takes an open subset to an open subset. If it is continuous and one to one, it is a
homeomorphism.

Corollary 1: Let F and G be two closed linear subspaces in E such that F ⊕ G = E. Then
the map:

F ×G → E

(u, v) 7→ u+ v

is an isomorphism of Banach spaces.

Restricting oneself to the Hilbert setting is convenient because of the existence of orthogonal com-
plements for closed subspaces. This property can be formulated as follows.

Definition: A linear subspace F of a Banach vector space E splits the space E if it is closed
and if there exists a closed linear subspace G of E such that E = F ⊕G.

In the finite dimensional setting, any subspace splits a vector space. In the Hilbert setting, any
closed subspace of a Hilbert space splits the space; the orthogonal complement does the job and the
above Corollary takes the following form.
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Corollary 2: Let E be a Hilbert vector space and F a closed linear subspace of E then the map:

F × F⊥ → E

(u, v) 7→ u+ v

is an isomorphism of Hilbert spaces.

1.2 Manifolds, submanifolds

Useful references are [22], [27],[30], [33], [55].

Definition: A manifold M of class Ck, k ≥ 0 (or Ck-manifold) modelled on a Banach space E
(called the model space) is a topological space equipped with a Ck-atlas i.e. a set of local charts
{(Ui, φi), i ∈ I} satisfying the following requirements:

i) for any i ∈ I the subset Ui is open and M =
⋃
i∈I Ui,

ii) for any i ∈ I, the map φi : Ui → φi(Ui) is a homomeorphism onto an open subset of E,

iii) for any i, j ∈ I the maps

φi ◦ φ−1
j : φj(Ui ∩ Uj)→ φi(Ui ∩ Uj)

are diffeomorphisms of class Ck called transition maps.

It is of class C∞ if it is of class Ck for all k ≥ 0.

An atlas is not unique and any Ck (resp. C∞) atlas could do; one usually picks out the maxi-
mal atlas, i.e. one that contains all the others.

A (real) finite dimensional manifold of dimension n is modelled on E = IRn and local charts provide
local coordinates:

φi : Ui → φi(Ui)

x 7→ (x1, · · · , xn) ∈ IRn.

Transition maps are elements of GL(n, IR).
Examples.

• The unit sphere in Rn+1 defined as:

Sn = {(x0, · · · , xn) ∈ IRn+1,
n∑
i=0

|xi|2 = 1}

is a smooth manifold of dimension n. Let U1 = Sn − {N} and U2 = Sn − {S}, with
N = (0, · · · , 0, 1) the north pole and S = (0, · · · , 0,−1) the south pole. Given a point

M(x0, · · · , xn−1, xn) ∈ U1, we have
−−→
NM = (xn − 1) ( x0

xn−1
, · · · , xn−1

xn−1
, 1) and for a point a point

M(x0, · · · , xn−1, xn) ∈ U1 we have
−−→
SM = (xn + 1) ( x0

xn+1
, · · · , xn−1

xn+1
, 1). Local charts are (U1, φ1)

and (U2, φ2) where φ1(x0, · · · , xn) =
(

x0

1−xn , · · · ,
xn−1

1−xn

)
,φ2(x0, · · · , xn) =

(
x0

1+xn
, · · · , xn−1

1+xn

)
.
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• The n-th dimensional torus T n = Rn/ ∼ where

z1 ∼ z2 ⇔ ∃ni ∈ ZZ, i = 1 · · · , n, z1 − z2 =
n∑
i=1

niei

where we have set ei = (0, · · · , 0, 1, 0, · · · , 0) ∈ IRn with 1 at the i-th place.

• The projective plane Pn(R) = Rn+1 − {0}/ ∼= Sn/ ' where z1 ∼ z2 ⇔ ∃λ ∈ IR, z1 = λz2

and z1 ' z2 ⇔ ∃λ ∈ {−1, 1}, z1 = λz2. Local charts are given by Ui = {(x0, x1, · · · , xn) ∈
IRn+1, xi 6= 0} and φi(x) =

(
x0

xi
, · · · , x̂i

xi
, · · · , xn

xi

)
where theˆmeans we have deleted the variable.

• The Grassmann manifold Gn
k(IR) of k-dimensional submanifolds of IRn. Given V ⊂ IRn, we

can identify IRn = V × V ⊥. A neighborhood of V ∈ Gn
k is mapped homeomorphically onto an

open set in the vector space of linear maps V → V ⊥. This makes Gn
k a manifold of dimension

k(n− k). The case k = 1 yields back the projective space Pn(IR).

Definition: Let F be a linear subspace of a Banach vector space E that splits E. Given a Ck

manifold M modelled on E, a subset N of M is a submanifold of M modelled on F provided there
is a Ck-atlas {(Ui, φi), i ∈ I} on M that induces an atlas on N , i.e. for any i ∈ I there are open
subsets Vi,Wi of E,F such that

φi(Ui) = Vi ⊕Wi

and
φi(Ui ∩N) = Vi ⊕ {0}.

In the case of an n-dimensional real manifold, the model space is Rn and a subspace F of dimension
k ≤ n of IRn can be equipped with a basis which we complete to a basis of IRn. In this basis local
coordinates on N will be of the form:

(φi)|N : Ui ∩N → φi(Ui)

x 7→ (x1, · · · , xk, 0, · · · , 0) ∈ IRn.

In what follows, using local charts, we carry out to manifolds the notion of differentiability, Ck-
regularity, and the notion of diffeomorphism, to maps between manifolds. Although the construction
uses local charts, the concept thereby defined is shown to be independent of the choice of local chart.
All the manifolds involved are Banach manifolds.

Definition: Let M,N be two Banach manifolds of class Ck, C l, k, l ≥ 1 respectively and mod-
elled on E,F respectively. A map f : M → N is differentiable at a point x0 ∈ M provided there is
a local chart (U, φ) of M containing x0, a local chart (V, ψ) containing f(x0) such that the map

ψ ◦ f ◦ φ−1 : φ(U) ⊂ E → ψ(V ) ⊂ F

is differentiable at point φ(x0).

A tangent vector at a point x of a Ck-Banach manifold M (k ≥ 1) modelled on E is an equiva-
lence class ξ of triples (U, φ, v) where (U, φ) is a local chart on M containing x and v a vector in the
Banach space E, the equivalence relation being defined by:

(U, φ, v) ∼ (V, ψ, w)⇔ w = Dφ(x)

(
ψ ◦ φ−1

)
(v).

In other words, v is the tangent vector ξ read in the local chart (U, φ) whereas w is the tangent vector
ξ read in the local chart (V, ψ).
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In the finite dimensional setting, say in dimension n, given a local system of coordinates (x1, · · · , xn),
a tangent vector reads v :=

∑n
i=1 vi

∂
∂xi

.

The space TxM of tangent vectors at a point x ∈ M can be equipped with a vector space struc-
ture induced from that of the model space E. Since transition maps are diffeomorphisms, the maps
Dφ(x) (ψ ◦ φ−1) are isomorphisms of Banach spaces and TxM can be equipped with a Banach struc-
ture induced from that on E. Thus TxM ' E is a Banach space.

Definition-Proposition: Let M and N be two Banach manifolds of class Ck, C l respectively,
with k, l ≥ 1. Let f : M → N be a differentiable map, then Dxf : TxM → Tf(x)N is a linear map,
called the differential of f at point x defined by:

Dxf(ξ) = η ⇔ v = Dφ(x)

(
ψ ◦ f ◦ φ−1

)
u

whenever u corresponds to ξ read in a local chart (U, φ) containing x and v corresponds to η read in
a local chart (V, ψ) containing f(x).

This definition is independent of the choice of local chart.

Given a manifold M of class Ck, k ≥ 1, the set TM :=
⋃
x∈M TxM can be equipped with a Ck−1-

manifold structure, a local chart at (x, ξ), ξ ∈ TxM being of the type (U, φ,Dφ) where (U, φ) is a
local chart on M at point x.

Definition: Given manifolds M,N of class Ck, C l, k, l ≥ 1, a map f : M → N is of class Cj,
with 1 ≤ j ≤ inf{k, l} provided it is differentiable and Df : TM → TN is of class Cj−1.

Submanifolds can be obtained via embeddings, a particular class of immersion. As we saw in the
first section, a subspace of a Banach space does not automatically split the space E, so that we need
to encode a “splitting” condition in the definition of immersion:

Definition: A differentiable map f : M → N from a Ck-manifold M , to a C l-manifold N with
k, l ≥ 1 is an immersion (resp. submersion) provided Dxf is injective (resp. onto) and the range
R(Dxf) (resp. the kernel Ker(Dxf) splits Tf(x)N (resp. TxM) for any x ∈M .

Here again, the Hilbert setting offers a simplification:

A differentiable map f : M → N from a Hilbert manifold M to a Hilbert manifold N is an im-
mersion (resp. submersion) provided Dxf is injective (resp. onto) and R(Dxf) is closed for any
x ∈M . (Note that the kernel is always closed when the operator is closed).

An injective immersion is called an embedding. The following result which is a manifold version
of the global inverse map theorem will be very useful in the slice theorem.

Global inverse map theorem: An embedding f : M → N that is a homeomorphism onto its
range yields a submanifold f(M) of N and f(M) 'M , namely M is diffeomorphic to its range.

1.3 Partitions of unity

Useful references are [26], [30].
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Partitions of unity provided means of gluing together local objects in order to build a globally
defined one. It is therefore important to define conditions under which partitions of unity with a
certain degree of regularity exist.

Definition: A partition of unity of class Ck of a Ck-manifold M is given by a locally finite covering
(ui)i∈I of M and a family {ψi, i ∈ I} of maps of class Ck:

ψi : E → IR

such that:

1. 0 ≤ ψi, ∀i ∈ I

2. The support of ψi is contained in Ui

3.
∑

i∈I ψi(p) = 1.

Such a partition of unity is said to be subordinated to an atlas (Wi, φi)i∈I on the manifold if Ūi ⊂ Wi.
A partition of unity is smooth whenever it is of class Ck for any k ∈ IN .

Let us recall that a manifold is paracompact if from any cover of the manifold, one can extract
a locally finite sub-cover, i.e. a subcover such that every point of the manifold admits a neighbor-
hood which only intersects a finite number of the open subsets of this covering.
The following topological lemma will be useful in the sequel:

Lemma:

1) Any paracompact manifold is normal, i.e. two disjoint closed subsets have dijoint neighbor-
hoods.

2) (Urysohn’s Lemma) Given two closed disjoints subsets A and B of a topological normal vector
space E, there is a continuous map f : E → [0, 1] which vanishes on A and is equal to 1 on B.

3) Given a locally finite covering (Ui) of a paracompact topological vector space, there is a locally
finite subcovering (Vi) such that V̄i ⊂ Ui.

Proposition: Any paracompact topological manifold has a continuous partition of unity.

Proof: Let U be an open set on a manifold modelled on some sparable space E and let x ∈ U .
Let (Ui, φi) be an atlas and (Ui0 , φi0) be a local chart at point x0. φi0 can be composed with a
map that sends an open ball of E onto E in such a way that the resulting map (also denoted by φ0)
satisfies φi0(Ui0) = E. Since the manifold is Banach, it is metrisable, since it is moreover separable, it
is paracompact ([30], chap. II, par. 3, Lemma 1). Thus one can extract from the above subcovering
a locally finite one. The third part of the above lemma then yields locally finite subcoverings (Vi)
and (Wi) such that W̄i ⊂ Vi ⊂ V̄i ⊂ Ui. Since every V̄i is closed, given the way the φi were chosen,
so are φi(V̄i) and φi(W̄i) closed subsets in E. E being Banach and separable, it is paracompact and
hence normal. The second part of the above lemma yields a continuous map ψi : E → [0, 1] which is
1 on W̄i and 0 outside Vi. Composing it with φi yields continuous maps Ψi : M → [0, 1] which are 1
on W̄i and that vanish outside Vi. Setting ξi := Ψi∑

Ψi
yields a partition of unity.

However, smooth partitions of unity do not always exist on smooth Banach manifolds. They do
on smooth Hilbert manifolds as a consequence of the following result which provides a smooth ver-
sion of the Urysohn Lemma. It essentially relies on the smoothness of the squared norm on a Hilbert
space.

7



Lemma ([30] Th.3.7): Given two disjoint closed subets A and B of a separable Hilbert space,
there is a smooth map φ : H → [0, 1] which is 1 on A and which vanishes on B.

Idea of the proof: First of all, using the smoothness of the squared norm ‖ · ‖2 on the Hilbert
space H, given any open ball B(x,R) in H centered at point x with radius R, one can build a smooth
function φ : H → [0, 1] which is positive on B(x,R) and vanishes elsewhere. For this, one picks any
smooth function η : IR → [0, 1] which is positive for t < R and vanishes beyond R, and composes it
with the squared norm to build φ := η ◦ ‖ · ‖2. Using the separability and metrisability of H, one can
build a countable set of open balls {Ui = B(xi, ri)} (with xi 6= xj) which cover A and do not meet
B. One can then inductively construct a locally finite refinement {Vi ⊂

⋃
i Ui}, and correspondingly

find smooth functions ηi built as above, which are positive on Vi and vanish outside Vi. The sum
η :=

∑
i ηi, which is finite at each point of W , defines a smooth function that is positive on A and

vanishes on B. Letting σ be a smooth function positive on the complement W c of W and that
vanishes on W , the map φ := η

η+σ
fulfills the requirements of the Lemma.

Proposition ([30] Corollary 3.8): A paracompact manifold of class Cp modelled on a separa-
ble Hilbert space admits a partition of unity of class Cp.

Idea of the Proof: The proof goes as in the construction of a continuous partition of unity. One
transports an open covering (which by paracompactness is locally finite) of the manifold by local
charts to the model space and applies the above lemma to the closure of the open subsets obtained
this way. Carrying back the smooth functions thus obtained to the manifold via the local charts
yields a smooth partition of unity on the manifold.

1.4 Vector fields

Useful references are [22], [27], [30], [33], [55].

Let M be a Ck-manifold and let j ≤ k. A Cj-vector field is a Cj-map ξ : M → TM such that
ξ(x) ∈ TxM for all x ∈ M . If M is smooth, a smooth vector field is one that is of class Cj for any
j ≥ 0.
Let us denote by Ξ(M) the vector space of smooth vector fields on M . If M is n-dimensional,
given a local system of coordinates (x1, · · · , xn) around a point x, a vector field ξ ∈ Ξ(M) reads
ξ(x) :=

∑n
i=1 ξi(x) d

dxi
.

Definition: The integral curve of a vector field ξ on a manifold M is a curve c : I → M (I an
open interval in IR) with tangent vector ξ(c(t)) at point c(t) i.e. such that:

d

dt
c(t) = ξ(c(t)) ∀t ∈ I.

From the theory of classical differential equations in Banach spaces we know, that given some initial
condition c(0) = x (we assume 0 ∈ I), for some x ∈ M , there exists a neighborhood I of 0 and an
integral curve uniquely defined on I. The union of the domains of all integral curves with a given
initial condition x is an open interval which we denote by Ix with end points t−x ≤ t+x (which could
be +∞ or −∞).
These integral curves are smooth w.r. to initial conditions namely, given an integral curve cx starting
at point x, there is an open neighborhood Ux of x and a neighborhood Jx of 0 such that for for y ∈ U ,
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the integral curve cy starting at point y is defined on Jx. Furthermore the map:

Jx × Ux → M

(t, y) 7→ cy(t)

is smooth.

For some given vector field ξ, let D(ξ) denote the subset in IR×M consisting of all points (t, x) such
that t−x < t < t+x . The flow of ξ is a map:

φ : D(ξ)→M

such that the map φx(t) := φ(t, x) defined on the interval Ix is a morphism and an integral curve for
ξ with initial condition x. In particular it satisfies the differential equation:

dφx
dt

= ξ ◦ φx.

The flow φx is complete if it can be extended to Ix = IR. Fixing the starting point x ∈ M
and setting φt := φx(t) for any t ∈ IR yields a one parameter semi-group:

φt ◦ φs = φt+s ∀t, s ∈ IR+.

The above property actually extends to t, s ∈ IR which implies:

φ−1
t = φ−t

so that {φt, t ∈ IR} defines a one parameter group of diffeomorphisms.

Given a differentiable map φ on M and a vector field ξ, we call the vector field defined by:

φ∗ξ(φ(x)) = Dxφ(ξ(x)),

the push forward of ξ and if φ is a diffeomorphism:

φ∗ξ :=
(
φ−1
)
∗ ξ

the pull-back of ξ. For example, we can consider the pull-back φ∗t ξ̃ of ξ̃ along the integral curve φt of ξ.

Definition: The Lie bracket of two vector fields ξ, ξ̃ on a smooth manifold M is given by the
variation of ξ̃ along an integral curve φt of ξ:

[ξ, ξ̃] :=
d

dt |t=0

(φ∗t ξ̃) =
d

dt |t=0

(
(φ−t)∗ ξ̃

)
.

On an n-dimensional manifold, in local coordinates around a point x the Lie bracket reads of two
vector fields ξ = ξi ∂

∂xi
and η = ηi ∂

∂xi
reads:

[ξ, η](x) =
(
ξi∂xiη

j − ηi∂xiξj
) ∂

∂xj

with the usual summation convention over repeated indices which run from 1 to n. Given a smooth
map φ from a manifold N to a manifold M and ξ, ξ̃ ∈ Ξ(M), we have:

[φ∗ξ, φ∗ξ̃] = φ∗[ξ, ξ̃].
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If ξ1, ξ2, ξ3 are three vector fileds on a smooth manifold M and φt is a one parameter group of local
diffeomorphisms generated by ξ3, then differentiating the following relation:

φt∗[ξ1, ξ2] = [φt∗ξ1, φt∗ξ2]

w.r.to t at t = 0 yields the Jacobi identity:

[[ξ1, ξ2], ξ3] + [[ξ2, ξ3], ξ1] + [[ξ3, ξ1], ξ2] = 0.

Vector fields can be identified with derivations on M and Lie brackets with operator brackets of
the derivations. By a derivation on M we mean a linear map L : C∞(M, IR) → C∞(M, IR) which
obeys the Leibniz rule

L(fg) = L(f)g + fL(g) ∀f, g ∈ C∞(M, IR).

The set Der(M) of derivations on M is a vector space over IR. To a given vector field ξ on M we
associate the map:

Lξ : C∞(M, IR) → C∞(M, IR)

f 7→ Df(ξ)

which is clearly a derivation.

Let ξ 6= 0, then there is some x ∈ M such that ξ(x) 6= 0. Let (U, φ) be a local chart around x
and u a representative of ξ(x) in this chart. Since u 6= 0, by the Hahn-Banach theorem there is some
linear form L on the model space E such that L(u) 6= 0. Thus L ◦Dφ = D(L ◦φ) does not vanish on
Dφ−1(u) which can be identified with ξ(x). Patching up the locally defined maps f := L◦φ : U → IR
using a smooth partition of unity on M (provided there is one) shows the existence of a function
f ∈ C∞(U, IR) such that Lξf(x) = Df(ξ(x)) 6= 0 so that Lξ 6= 0. Thus, provided there is a smooth
partition of unity on M , there is a one to one correspondence:

Ξ(M) → Der(M)

ξ 7→ Lξ : f → Df(ξ).

The following identification holds:

Proposition: Given two vector fields ξ, ξ̃ on a smooth manifold M and f ∈ C∞(M, IR):

[ξ, ξ̃]f := [Lξ, Lξ̃]f

where the bracket on the r.h.s is an operator bracket.

This identification yields back the antisymmetry of the bracket together with the Jacobi identity
which hold for the operator bracket.

1.5 Lie groups and Lie algebras

Useful references are [1], [8], [27].

Definition: A Banach (resp. Hilbert) Lie group modelled on a Banach (resp. Hilbert) space E
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is a C∞-manifold modelled on E, equipped with a group structure such that the multiplication and
inverse maps

G×G → G

(g, h) 7→ gh

and

G → G

g 7→ g−1

are smooth.
In fact this second property follows from the former using the global inverse map theorem (see section
1.2).

A finite dimensional Lie group is one that has a finite dimensional manifold structure. Exam-
ples of finite dimensional Lie groups are the group GL(n, IR) of invertible n × n real matrices, the
subgroup O(n) of orthogonal matrices both of which arise as structure groups of frame bundles, the
unitary groups U(n) = {A ∈ GL(n, C), AA∗ = 1} and the special unitary groups SU(n) = {A ∈
U(n), detA = 1}, that play an important role in gauge field theory.

Definition: Let H,G be two Lie groups and f : H → G an embedding which is homomorphism of
Lie groups and a homeomorphism onto f(H). Then f(H) is called a Lie subgroup of H.

Remark: Notice that f : H → G being an immersion, Def(TeH) splits TeG.

Definition: A Lie algebra A is a vector space equipped with an antisymmetric bilinear map:

A× A → A

(a, b) 7→ [a, b]

that satisfies the Jacobi identity:

[[a, b], c] + [[b, c], a] + [[c, a], b] = 0 ∀a, b, c ∈ A.

A Banach, resp. Hilbert Lie algebra is a Banach, resp. Hilbert vector space equipped with a contin-
uous antisymmetric bilinear map which satisfies the Jacobi identity.

On the grounds of the above remark, we call Lie subalgebra of a Banach Lie algebra A any closed
linear subspace of A that splits A and that is stable under the Lie bracket, i.e.

a, b ∈ B ⇒ [a, b] ∈ B.

In particular, a Lie subalgebra of a Hilbert Lie algebra A is a closed linear subspace of A stable under
the Lie bracket of A.

Definition: A left- (resp. right-) action of a Lie group G on a smooth manifold M is a map:

Θ : G×M → M

(g, x) 7→ Θ(g, x)

such that:
Θ(e, x) = x ∀x ∈M
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and
Θ(gh, x) = Θ (g,Θ(h, x)) ∀g, h ∈ G

(resp.
Θ(gh, x) = Θ (h,Θ(g, x)) ∀g, h ∈ G.)

Such an action is smooth if the map Θ is smooth. It is convenient to denote a right action by
Θ(g, x) := x · g and a left action by Θ(g, x) := g · x.

A Lie group acts on itself by a right and a left action via the multiplication maps:

Rg(h) := hg, Lg(h) := gh ∀h, g ∈ G.

It also acts on itself via the adjoint action:

G×G → G

((g, h) 7→ Adg(h) := LgRg−1h = Rg−1Lgh.

A right invariant field on G is a vector field ξ such that:

ξ(hg) = DgR(ξ(h)) i.e. Rg∗ξ = ξ ∀h, g ∈ G

and a left invariant field on G is a vector field ξ such that:

ξ(gh) = DgL(ξ(h)) i.e. Lg∗ξ = ξ ∀h, g ∈ G.

Let ΞL(G), resp. ΞR(G) denotes the space of left, resp. right invariant vector fields on G. For any
u ∈ TeG the vector field g → ξLu (g) := DeLg(u) is left invariant, g 7→ ξRu (g) := DeRg(u) is right
invariant, and we can build two maps:

ΞL : TeG → ΞL(G)
u 7→ DeLg(u)

and
ΞR : TeG → ΞR(G)

u 7→ DeRg(u),

which are one to one and onto.

If the manifold M is a Lie group, given two left invariant vector fields ξL and ξ̃L on G, their Lie
bracket is also left invariant for we have:

[Lg∗ξ, Lg∗ξ̃] = Lg∗[ξ
L, ξ̃L] ∀g ∈ G

and a similar property holds for right invariant vector fields on G. Thus the Lie bracket on vector
fields induces two brackets on TeG:

[u, v]L := [ξLu , ξ
L
v ], [u, v]R := [ξRu , ξ

R
v ] ∀u, v ∈ TeG.

The map:

J : G → G

g 7→ g−1

satisfies gJ(g) = e, i.e. RJ(g)(g) = e (or equivalently J(g)g = e i.e. Lg(J(g)) = e for any g ∈ G).
Differentiating this relation at point h ∈ G yields DhRg−1u + (Dhg−1Lg)DhJu = 0, and gives the
expression for its differential map at h ∈ G:

DhJ : ThG → ThG

v 7→ − (Dhg−1Lg)
−1DhRg−1v = −Dhg−1Rg−1 (DhLg)

−1 v
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since DLg commutes with DRg. Hence DJ takes a left invariant vector field ξLu (g) = DeLg(u) ∈ TgG
to a right invariant vector field DgJξ

L
u (g) = −DeRg−1 (DgLg)

−1 ξLu (g) = −ξRu (g−1), so that:

DgJ(ξLu ) = −ξRu ◦ J i.e J∗ξ
R
u = −ξLu .

Since J is a diffeomorphism, it follows that:

[ξLu , ξ
L
v ] =

[
J∗ξ

R
u , J∗ξ

R
v

]
= J∗

[
ξRu , ξ

R
v

]
and hence

[u, v]L = [u, v]R = [ξRu , ξ
R
v ](e) = [ξLu , ξ

L
v ](e).

The tangent space TeG equipped with this Lie bracket becomes a Lie algebra denoted henceforth by
Lie(G).

Every automorphism φ of the Lie group G induces an automorphism φ∗ of its Lie algebra Lie(G) for
if ξ is a left invariant vector field, then so is φ∗ξ and

[φ∗ξ, φ∗ξ̃] = φ∗[ξ, ξ̃].

In particular, for any g ∈ G, the automorphism

Ad(g) : G → G

h 7→ ghg−1

induces an automorphism of Lie(G) also denoted by Adg.

To the left invariant and right invariant vector fields ξLu and ξRu built from an element u ∈ Lie(G),
we can associate two local flows φLu and φRu defined by

dφLu(t)

dt
= ξLu (φLu(t)),

dφRu (t)

dt
= ξRu (φRu (t)).

Let us assume such a flow φu is defined up to time t1. For simplicity we drop the superscript L and
set g1 = φu(t1). Then ξLu being left invariant ψu(t) := g1φu(t) verifies:

d

dt
ψu(t) = Dφu(t)Lg1

d

dt
Dφu(t) = Dφu(t)Lg1ξ

L
u (φu(t))

= ξLu (φu(t))(g1φu(t)) = ξLu (u)(ψu(t))

and ψu(0) = g1. As before, ψu can be defined on an interval [0, t1[ thus extending the flow φu defined
on [0, t1[ to a flow on, [0, 2t1[. Iterating this procedure shows that the flow can be extended to all IR.
The same holds for the flow φRu .

The left invariant and right invariant integral flows φLu and φRu of some vector u in the Lie alge-
bra of a Lie group are therefore complete.
Let us compare these two flows:

d

dt
(J ◦ φLu)(t) = DφLu (t)J

(
ξLu (φLu(t))

)
= −ξRu

(
J ◦ φLu(t)

)
and hence

d

dt

(
φLu(t)

)
=

d

dt

(
J ◦ φLu(−t)

)
= ξRu

(
J ◦ φLu

)
(−t)
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so that φLu(t) satisfies the same differential system as φRu (t) with the same initial conditions.

From the uniqueness of such a solution, we conclude that

φLu(t) = φRu (t) := φu(t).

Definition: The map:

exp : Lie(G) → G

ξ 7→ φu(1)

is called the exponential map on the Lie group G.

Since De exp = Id, by the local inverse theorem recalled in section 1.1, it induces a local diffeo-
morphism:

exp : U ⊂ Lie(G)→ V ⊂ G

from an open neighborhood of 0 to an open neighborhood of e ∈ G.
On GL(n, IR) it coincides with the exponential map of matrices expA =

∑∞
0

1
k!
Ak.

Given a ∈ Lie(G), we can define a one parameter family gt := exp(ta), t ∈ I ⊂ IR where I is
a (small enough open) interval containing 0, and define the adjoint action of Lie(G) on itself by
differentiating that of G on Lie(G):

ada : Lie(G) → Lie(G)

b 7→ d

dt |t=0

Adgt(b) = [a, b]

thus recovering the Lie bracket of Lie(G).

The exponential map is not a morphism from the vector space (Lie(G),+) to the group (G, ·) as can
be seen from the Lie Campbell-Hausdorff formula:

exp a · exp b = exp

(
∞∑
k=0

C(k)(a, b)

)
using the Banach topology on Lie(G) and where C(1)(a, b) = a+ b and for k > 1, C(k)(a, b) is a linear
combination of Lie monomials of degree k in a and b given by:

C(k)(a, b) =
∞∑
j=1

(−1)j+1

(j + 1)

∑ (ad a)α1(ad b)β1 · · · (ad a)αj(ad b)βjb

(1 +
∑j

l=1 βl)α1! · · ·αj!β1! · · · βj!
.

Here we have set ad a(c) := [a, c] and the inner sum is over all j-tuples of pairs of nonnegative integers
(αl, βl) with αl + βl > 0 and α1 + · · ·αj + β1 + · · · βj + 1 = k (terms with βj 6= 0 vanish).

2 Vector bundles and tensor fields

2.1 Definition and first properties

Useful references are [23], [?], [27], [39], [48], [52], [55].

Definition: A fibre bundle of class Ck with typical fibre a Ck Banach manifold V (we shall also say
modelled on V and call V the model space) is a triple (F,B, π) often denoted by π : F → B where

14



- F and B are differentiable manifolds of class Ck, called total space and base space respectively,

- π : F → B is a map of class Ck, called canonical projection , such that there is a set of local
charts (Ui, φi)i∈I covering B and Ck diffeomorphisms

τi : π−1(Ui)→ φi(Ui)× V

satisfying the following requirements:

i) the fibre Fb = π−1(b) is a Banach manifold and

ii) τi(b) := τi|Fb is a diffeomorphism from Fb to F .

A triple (Ui, φi, τi) is called a local trivialisation of the bundle.

Two local trivialisations (Ui, φi, τi) and (Uj, φj, τj) give rise to maps τij := τi ◦ τ−1
j called transi-

tion maps of the form:

τij : φi(Ui ∩ Uj)× V → φj(Ui ∩ Uj)× V
(b, v) 7→ (b, τij(b)(v))

where the τij(b) are diffeomorphisms of class Ck of V .

Transition maps satisfy the following properties:

τii(b) = idV ∀b ∈ Ui
τij(b) ◦ τji(b) = idV ∀b ∈ Ui ∩ Uj

τij(b) ◦ τjk(b) ◦ τki(b) = idV ∀b ∈ Ui ∩ Uj ∩ Uk.

The family {τij} is called a cocycle associated to the trivialization {Ui, τi, i ∈ I}, and the last relation
mentioned above a cocycle relation. From a covering of a manifold B together with a set of transition
maps satisfying these relations one can reconstruct the fibre bundle on B.

A Ck section of a fibre bundle π : F → B is a map s : B → F of class Ck such that π ◦ s = IdB. It
is smooth when it is of class Ck for all k ∈ IN .
The space of Ck sections of F is denoted by Ck(F ).
In the following we mainly consider smooth manifolds and smooth bundles as well as smooth sections.

Definition: A morphism of Ck fibre bundles π : F → B and π′ : F ′ → B′ is a couple (f0, f)
of Ck morphisms f0 : B → B′ and f : F → F ′ such that π′ ◦ f = f0 ◦ π and the induced map on the
fibres fx : π−1(x)→ (π′)−1 (x) is a morphism of the fibres.
In what follows we shall often take B = B′ and f0 = Id.

Two fibre bundles are isomorphic if there is a diffeomorphism from one to the other.
A trivial fibre bundle is a fibre bundle isomorphic to the bundle π : F = B × V → V.

Definition: Let B′ → B be a Ck morphism of Banach manifolds, and let F → B be a Ck-fibre
bundle on B. The pull-back φ∗F of F by φ is a fibre bundle φ∗π : φ∗F → B′ with total space:

φ∗F := {(b′, v(φ(b′))) ∈ B′ × Fφ(b′))}

where V is the model space of F and with projection φ∗π(b) = π(φ(b)).
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Definition: A (real or complex) vector bundle of class Ck is a fibre bundle of class Ck with
typical fibre a (real or complex) vector space V , and such that there is a local trivialization inducing
automorphisms τij(x) of the Banach vector space V , i.e. τij ∈ GL(V ).

When V = IRd (resp. Cd), the vector bundle has rank d. If d = 1 it is called a line bundle.

Example. The Grassmann bundle γnk over the Grassmann manifold Gn
k(IR) is the vector bundle

with fibre above the vector space V ⊂ IRn given by the pairs (V, x) such that x ∈ V . It is a vector
bundle of rank k.

A real finite rank vector bundle is orientable provided it has a trivialization with transition maps
τij(b) with positive determinant. A manifold is orientable whenever its tangent bundle is orientable.

Given two Ck-vector bundles π1 : E1 → B and π2 : E2 → B over a Ck- manifold B modelled
repsectively on the linear spaces V1 and V2, we can build their Whitney sum π1 ⊕ π2 : E1 ⊕E2 → B
which is the Ck-vector bundle over B modelled on V1 ⊕ V2 whose fibre above b ∈ B is given by
π−1

1 (b)⊕ π−1
2 (b) and whose transition maps are given by the Whitney sum of the transition maps of

E1 and E
2 .

Serre-Swan’s theorem states that for any a finite rank Ck-vector bundle E over B, there is a finite
rank Ck-vector bundle F over B such that E ⊕ F is Ck-isomorphic to a trivial bundle over B.

The set C0(E) (resp. C∞(E)) of continuous sections (resp. smooth sections) of a vector bun-
dle E forms a linear space which is a C0(B)- (resp. C∞(B)-module. An equivalent formulation
of Serre-Swan’s theorem is the existence for the C0(B)− (resp. C∞(B)-) module C0(E) (resp.
C∞(E) of a C0(B)− (resp. C∞(B)−) module M such that C0(E) ⊕ M ' (C∞(B))N (resp.

C∞(E)⊕M ' (C0(B))
N

for some positive integer N .

Given a manifold M of class Ck+1 (resp. of class C∞) modelled on a Banach space V , the tan-
gent bundle TM is a Ck (resp. C∞)-vector bundle with fibres modelled on that same space V ; given
a local trivialization (Ui, φi) on M , a local trivialization (Ui, φi, τi) on TM is given by (Ui, φi, Dφi)
and Dφi ◦Dφ−1

j is of class Ck−1.

Vector fields on a smooth manifold M are smooth sections of the tangent vector bundle so that
the space Ξ(M) is now viewed as the vector space of smooth sections C∞(TM) of the tangent bun-
dle TM .
When φ is a diffeomorphism, the pull-back φ∗ξ of a vector field is a section of the pull-back φ∗TM
of the tangent bundle to M since φ∗ξ(φ(m)) = Dφ(ξ(m)).

Definition: A morphism of Ck vector bundles π : E → B and π′ : E ′ → B′ is a couple (f0, f)
of Ck morphisms f0 : B → B′ and f : E → E ′ such that π′ ◦ f = f0 ◦ π and the induced map on
the fibres fx : π−1(x) → (π′)−1 (x) is a linear map. It is an isomorphism if it is invertible and if its
inverse is a morphism of vector bundles
Here again, we often take B = B′ and f0 = Id.
Let k = 0, in which case the vector bundles are topological vector bundles. An isomorphism preserves
direct sums so that the Whitney sum induces a sum

[E]⊕̇[F ] = [E ⊕ F ]

on the set
Vect(B) := {[E], E vector bundle over B}

of equivalence classes of vector bundles π : E → B modulo isomorphisms, turning it into an abelian
semi-group. Let [k] denote the equivalence class of a trivial bundle of rank k over B. Serre-Swan’s
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theorem implies the existence for any topological vector bundle π1 : E1 → B of a vector bundle
π2 : E2 → B and a positive integer k such that [E1]⊕ [E2] = [k].
The set:

K0(B) := {([E1], [E2])}/∼; where ([E1], [E2]) ∼ ([F1], [F2])⇐⇒ [E1]⊕̇[F2] = [F1]⊕̇[E2],

called the K0-group of B inherits a group structure for the Whitney sum ⊕̇. Morally, ([E1], [E2])
stands for a difference [E1]	̇[E2] and two topological vector bundles E and F define the same element
in K0(B) if there is a vector bundle G such that F ⊕G ' E ⊕G.

2.2 Tensor, dual and morphism bundles

We refer the reader to the same references as the previous section.
The (topological) tensor product of two Banach spaces is built from their algebraic tensor product
as follows.

Definition: Given two Banach vector spaces V1 and V2, the tensor product V1⊗̂V2 is the unique
Banach vector space V such that the following map:

L(V,W ) → B(V1 × V2,W )

f 7→ ((u1, u2) 7→ f(u1 ⊗ u2))

is continuous for any Banach space W . Here B(V1 × V2,W ) denotes the set of continuous bilinear
forms on V1 × V2 with values in W .

If ‖ · ‖i denotes the norm on Vi for i = 1, 2 then V1⊗̂V2 coincides with the closure of the tensor
product for the norm on Vi defined by:

‖v1⊗̂v2‖ = ‖v1‖1 · ‖v2‖2.

If both V1 and V2 are finite dimensional, then the tensor product ⊗̂ coincides with the ordinary tensor
product ⊗. In what follows we shall drop the explicit mention of the completion .̂

Note that K0(B) for some manifold B, can be equipped with the induced tensor product on isomor-
phism classes which turns it into a ring.

Definition: Let π1 : E1 → B and π2 : E2 → B be two vector bundles of class Ck with fibres
modelled on V1 and V2 respectively. The tensor product π1 ⊗ π2 : E1 ⊗ E2 → B is a vector bundle
of class Ck modelled on V1 ⊗ V2 with fibre π−1

1 (b) ⊗ π−1
2 (b) above b ∈ B and the local trivializa-

tions of which are built from the tensor product of local trivializations (Ui, φi, τ
1
i ), (Ui, φi, τ

2
i ) and

(Ui, φi, τ
1
i ⊗ τ 2

i ).

Transition functions are given by tensor products τ 1
ij ⊗ τ 2

ij where τ kij, k = 1, 2 are transition maps for
the bundles Ek, k = 1, 2.
Whenever E1 and E2 have ranks d1 and d2, their tensor product has rank d1d2.

Given a topological vector space V , the dual space V ∗ is the space of continuous linear forms on V .

Definition: Let π : E → B be a Ck vector bundle with fibres modelled on a Banach space V .
The dual bundle π∗ : E∗ → B is a vector bundle of class Ck modelled on V ∗ with fibre (π−1(b))

∗

above b ∈ B and local trivializations (Ui, φi,
(
τ−1
i

)∗
) induced by some local trivialization (Ui, φi, τi)

of E.
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The transition maps are given by
(
τ−1
ij

)∗
, where the τij are transition maps for E.

Combining duals and tensor products yields different types of bundles which are useful for geo-
metric purposes. The homomorphism bundle is one of them:

Definition: Given two vector bundles E → B and F → B, we can build the bundle Hom(E,F ) :=
E∗ ⊗ F of linear morphisms from E to F .

Also we shall use the notion of symmetrized and antisymmetrized tensor products of vector bundles:

Definition: Given vector bundles E1, · · · , Ek based on some manifold B, we can build symmet-
ric sections of their tensor product from sections σ1, · · · , σk of E1, · · · , Ek:

σ1 ⊗s σ2 ⊗s · · · ⊗s σk :=
1

k!

∑
α∈Σk

σα(1) ⊗ σα(2) ⊗ · · · ⊗ σα(k),

and similarly antisymmetric sections:

σ1 ∧ σ2 ∧ · · · ∧ σk :=
1

k!

∑
α∈Σk

(−1)sign(α)σα(1) ⊗ σα(2) ⊗ · · · ⊗ σα(k)

where sign(α) is the signature of the permutation.

Another useful class of bundles is that of tensor bundles on a manifold:

Definition: Given a Banach manifold X of class Ck modelled on a Banach vector space E then:

- The dual bundle T ∗X to the tangent bundle TX is a vector bundle called the cotangent bundle.
It is a vector bundle of class Ck−1 based on B and with fibres modelled on E∗. Its sections are
called cotangent vector fields.

- The tensor bundle TXq := ⊗qTX, q ∈ IN∗ is a vector bundle of class Ck−1 based on B and
with fibres modelled on ⊗qE. Its sections are called contravariant q-tensor fields.

- The tensor bundle (T ∗X)p := ⊗pT ∗X, p ∈ IN∗ is a vector bundle of class Ck−1 based on B and
with fibres modelled on ⊗pE∗. Its sections are called covariant p-tensor fields.

- A (p, q) tensor field is a section of the bundle (⊗qTX)⊗ (⊗pT ∗X).

In finite dimensions, one often writes a (p, q) tensor T in local coordinates as T
j1···jq
i1···ip .

The p-th antisymetric power of the cotangent bundle denoted by

ΛpTM := T ∗M ∧ · · · ∧ T ∗M (p− times)

is a vector bundle over M whose sections correspond to p-forms. If M is smooth they form the space
Ωp(M) of smooth p-forms on M .
Here we have set

V1 ∧ · · · ∧ Vp := {v1 ∧ · · · ∧ vp =
1

p!

∑
τ∈Σp

(−1)|τ |vτ(1) ⊗ · · · vτ(p), vi ∈ Vi,

Pull-backs can be extended to covariant tensor fields.
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Given a morphism φ : X → Y between two Ck manifolds X and Y , the pull-back by φ of a co-
variant p-tensor field T on Y is given by:

(φ∗T )x(U1, · · · , Up) := Tφ(x)(Dxφ(U1), · · · , Dxφ(Up)) ∀U1, · · · , Up ∈ TxX.

In particular, the pull-back of a p-form is also a p-form. It is easy to check that

φ∗(T1 ⊗ T2) = φ∗T1 ⊗ φ∗T2

and that given two morphisms φ, ψ we have:

(φ⊗ ψ)∗ = ψ∗ ⊗ φ∗.

If φ is a diffeomorphism, the pull-back can be extended to contravariant vector fields:

φ∗(ξ1 ⊗ · · · ⊗ ξq) := (φ−1)∗ξ1 ⊗ · · · ⊗ (φ−1)∗ξq.

2.3 Examples of tensors: metrics and almost complex structures

Important examples of covariant tensor fields are the Riemannian (resp. Hermitian) metrics.

Definition: A weak (resp. strong) Riemannian metric on a smooth real vector bundle with fi-
bres modelled on a Banach space and based on a manifold B, is a smooth section g of E∗ ⊗ E∗

such that for any b ∈ B, gb induces a symmetric positive definite form on each fibre Eb, producing
a weaker topology than the Banach topology on the fibre (respectively the same topology as the
Banach topology on the fibre).

Definition: A weak (resp. strong) Hermitian metric on a smooth complex vector bundle with
fibres modelled on a Banach space and based on a manifold B, is a smooth section h of E∗ ⊗ E∗
such that for any b ∈ B, hb induces a Hermitian positive definite form on each fibre Eb, producing
a weaker topology than the Banach topology on the fibre (respectively the same topology as the
Banach topology on the fibre).

In the following when there is no other explicit mention, we shall be thinking of strong metrics.

A weak (resp. strong) Riemannian (Hermitian) metric on a Banach manifold is a weak (resp. strong)
Riemannian (Hermitian) metric on the tangent bundle TB.

If M is finite dimensional, then weak and strong topologies coincide and one only requires that
gb (resp. hb) be a positive definite symmetric (resp. Hermitian) form on the fibres. Given a metric
on M of dimension n, a local orthonormal system of coordinates (x1, · · · , xn) around a point x is
such that setting ei := ∂

∂xi
we have gij(x) := gx(ei, ej) = δij, i.e. the matrix representing gx in this

coordinate system is the identity matrix.

Given a smooth map φ : N → M between two manifolds and a Riemannian (resp. Hermitian)
metric g (resp. h) on a vector bundle based on M , the pull-back φ∗g (resp. φ∗h) yields a Riemannian
(resp. Hermitian) metric on the pull-back vector bundle φ∗E based on N .
In particular, if ξ is a vector field on a Riemannian manifold (M, g) the local one parameter group
of diffeomorphisms φt generated by ξ acts on the metric by pull-back φ∗tg. A Killing vector field also
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called an infinitesimal isometry, is a vector field ξ such that the Lie derivative of the metric in the
direction ξ vanishes, i.e.:

Lξg :=

(
d

dt

)
t=0

φ∗tg = 0.

If ξ, ξ̃ are two Killing vector fields, then so is their bracket [ξ, ξ̃].

A vector bundle equipped with a (strong) Riemannian (resp. Hermitian) metric is called a Rie-
mannian (resp. Hermitian) vector bundle. A manifold M such that TM is equipped with a (strong)
Riemannian (resp. Hermitian) metric is called a Riemannian (resp. Hermitian) manifold.

Notice that a Banach vector bundle equipped with a strong Riemannian metric becomes a Hilbert
bundle since the fibres become Hilbert spaces when equipped with the inner product induced by the
metric. This is of course not the case anymore if the Riemannian structure is weak.

Metrics do not always exist on a manifold; however, provided there is a smooth partition of unity on
the manifold, one can always build a Riemannian metric patching up locally defined positive definite
forms. Also, if M is a Riemannian manifold, tensor bundles over M can be equipped with a metric
structure induced from that of M .

The existence of a Riemannian metric on a manifold M provides explicit isomorphisms between
the tangent and cotangent vector fields called musical isomorphisms:

TxM → T ∗xM

V 7→ V [

defined by
V [(W ) = 〈V,W 〉x, ∀W ∈ TxM

where 〈·, ·〉x is the scalar product on the fibre TxM of the tangent bundle above x ∈ M induced by
the Riemannian metric. Similarly, using the Riesz theorem, one defines:

T ∗xM → TxM

α 7→ α]

by
α(W ) = 〈α],W 〉x, ∀W ∈ TxM.

Using these musical isomorphisms, we can equip tensor bundles with Riemannian structures:

〈T, T ′〉x = gi1j1 · · · gipjp gµ1ν1 · · · gµqνq T
µ1···µq
i1...ip

T
ν1···νq
j1...jp

∀T ∈ (TM)⊗q ⊗ (T ∗M)⊗p .

Definition: An almost complex structure on an oriented Banach vector bundle π : E → B is a
smooth section J of E∗ ⊗ E which induces a morphism, also denoted by J , preserving orientation
and such that J2 = −Id. An almost complex structure on an oriented manifold M is one on the
tangent bundle TM , i.e. it is a (1, 1) tensor J inducing a morphism J on TM which preserves
orientation and satisfies J2 = −Id.

An almost complex structure J on a real vector bundle E extends linearly to its complexification
J C : EC → EC . This complexified vector bundle splits EC = E1,0 ⊕ E0,1 where E1,0 is the vector
bundle over B with fibre Ker(J(b) − i) := {ub ∈ EC

b , J(b)(ub) = iub} above b ∈ B, resp. E0,1 the
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vector bundle over B with fibre Ker(J(b) + i) := {vb ∈ EC
b , J(b)(vb) = −ivb} above b ∈ B.

Definition: Let M be a manifold equipped with an almost complex structure J which induces
a splitting TM C = T 1,0M ⊕ T 0,1M . If T 1,0M is stable under brackets of vector fields, then J is said
to be integrable.

Proposition: An almost complex structure J on M is integrable if and only if the Nuijenhuis
tensor field N : C∞(TM)× C∞(TM)→ C∞(TM) defined by

N(U, V ) = [U, V ] + J [JU, V ] + J [U, JV ]− [JU, JV ]

vanishes for any U ∈ C∞(TM), V ∈ C∞(TM).

Proof:Extending the Nuijenhuis tensor to complex vector fields, W = U + iV, Z = X + iY , we
can write:

N(W,Z) = N(U,X)−N(V, Y ) + i (N(V,X) +N(U, Y )) .

Thus if N vanishes on real vector fields, it also vanishes on complex vector fields. Assume that
W,Z ∈ C∞(T 1,0M). Then JW = iW and JZ = iZ so that N(W,Z) = 2 ([W,Z] + iJ [W,Z]). Hence
N(W,Z) = 0⇒ J [W,Z] = −i[W,Z], i.e. [W,Z] ∈ C∞(T 1,0M). It follows that J is integrable.

Conversely, let us write W = W+ +W− and Z = Z+ + Z− according to the splitting C∞(T CM) =
C∞(T 1,0M)⊕ C∞(T 0,1M). Then

N(W,Z) = N(W+, Z+)−N(W−, Z−) + i
(
N(Z−,W+) +N(W+, Z−)

)
.

Since JW+ = iW+, JW− = −iW−, JZ+ = iZ+, JZ− = −iZ−, it follows that N(W+, Z−) =
N(W−, Z+) = 0 and N(W+, Z+) = N(W−, Z−) = 0 so that N finally vanishes on all complex
tangent fields.

Definition: A complex manifold is a manifold M equipped with a complex structure, i.ewith an
atlas (Ui, φi) with transition maps given by holomorphic maps. A complex structure on a manifold
induces an almost complex structure from the local charts.

Conversely we have:

Theorem (Newlander and Nirenberg) Let M be an (even dimensional) real manifold equipped
with an almost complex structure J . If J is integrable, it yields a complex structure on the manifold
with associated almost complex structure J .

If M and N are two complex manifolds, a map f : M → N is called holomorphic if it is holo-
morphic in any local chart, this requirement being independent of the choice of local chart since the
transition maps are holomorphic.

Let M be a real even dimensional manifold M equipped with a complex structure c. Given an-
other real even dimensional manifold N , a smooth map f : N → M induces a complex structure
f ∗c := {f−1(Ui), φi ◦f} on N called the pull-back of c by f . If N = M and if f is a diffeomorphism of
M , f ∗c is a priori different from the initial complex structure c in the sense that the charts are not only
different from the initial ones but also incompatible with them. Yet (M, c) and (M, f ∗c) are holomor-
phically equivalent in the sense that f : (M, c)→ (M, f ∗c) is a holomorphic map and so is its inverse.
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Let us comment on the finite dimensional case. Letting {zk := xk + iyk, k = 1, · · · , n} be a sys-
tem of local coordinates on the complex manifold M , we can set

J

(
∂

∂xk

)
=

∂

∂yk
, J

(
∂

∂yk

)
= − ∂

∂xk
.

This defines a (1, 1) tensor on M independently of the choice of local coordinates. Indeed, given
another system of local coordinates {z′k := x′k + iy′k, k = 1, · · · , n}, the Cauchy-Riemann equations

∂xi
∂x′j

=
∂yi
∂y′j

,
∂xi
∂y′j

=
∂yi
∂x′j

lead to a similar expression

J

(
∂

∂x′k

)
=

∂

∂y′k
, J

(
∂

∂y′k

)
= − ∂

∂x′k

so that we obtain an almost complex structure J on M .

A Riemannian metric g combined with an almost complex structure yields a Hermitian metric:

h(σ, ρ) := g(σ, Jρ).

2.4 Differential forms

Useful references are [6], [38].

Given a smooth manifold M , we previously introduced the space Ωp(M) of p-valued forms on M .
This generalises to E-valued p-forms on a manifold B, with E a smooth fibre bundle over a smooth
manifold B.

Definition: Let π : E → B be a smooth fibre bundle. An E-valued p-form α on B is a smooth
section of the tensor product ⊗pT ∗B ⊗ E such that:

α
(
Uσ(1), · · · , Uσ(p)

)
= (−1)ε(σ)α(U1, · · · , Up) ∀U1, · · · , Up ∈ TbB ∀σ ∈ Σp

where ε(σ) is the signature of σ.
In particular, such an expression vanishes whenever two vectors Ui and Uj coincide so that if the
manifold B is n-dimensional, using the multilinearity property, one can show that a p-form with
p > n vanishes identically.

We denote by Ωp(E) the space of smooth E-valued p-forms and Ω(E) := ⊕p=0Ωp(E), which be-
comes a finite sum when B is finite dimensional. For p = 0 we get back the space of smooth sections
of E. The degree of a p-form α is the integer p also denoted by |α|.

If E is the trivial vector bundle E = B × IR (or B × C) we get back the space Ωp(B) of p-forms on
B, and set Ω(B) := ⊕p∈INΩp(B) which is a finite sum as soon as B is finite dimensional. Given a
local system of coordinates (x1, · · · , xn) around a point x of an n-dimensional manifold, a one form
α(x) reads α(x) :=

∑n
i=1 αi(x)dxi.
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Whenever A is a fibration of algebras, the space Ω(A) can be equipped with the exterior product or
wedge product which sends α ∈ Ωp(A) and β ∈ Ωq(A) to α ∧ β ∈ Ωp+q(A):

(α ∧ β) (U1, · · · , Up, Up+1, · · · , Up+q)

:=
1

p! q!

∑
σ∈Σp+q

(−1)sign(σ)α(Uσ(1), · · · , Uσ(p)) · β(Uσ(p+1), · · · , Uσ(p+q)).

In particular, for two forms α and β and two vector fields U, V we have α∧ β(U, V ) = α(U) · β(V )−
α(V ) ·β(U). Here the dot denotes the product of sections of A. Thus Ω(A) becomes a graded algebra
with the grading given by the degree of forms. here are two important examples:

• Starting from the bundle E = B ×K where K is a field, yields a graded algebra structure on
Ω(B,K) using the product on K.

• Starting from a vector bundle E based on B, the bundle A = Hom(E) yields a fibration of
algebras on B and Ω(Hom(E)) can be equipped with a graded algebra structure using the
composition of homomorphisms.

We introduce two operators on forms which are useful to construct a Clifford multiplication on forms
later in these notes.

• Given a Riemannian manifold M , the exterior multiplication ε(V ) : Ω∗(M)→ Ω∗+1(M) is the
operator defined by:

ε(V )α = V ] ∧ α
where V ] is the 1-form associated to the vector field V by the musical isomorphisms.

• Given a fibration of algebras A and a vector field V on B, the contraction operator i(V ) :
Ω∗(A)→ Ω∗−1(A) is the unique operator such that:

i(V )α = α(V ) ∀α ∈ Ω1(A)

and
i(V )(α ∧ β) = i(V )α ∧ β + (−1)|α|α ∧ i(V )β ∀β ∈ Ω(A).

On a smooth oriented closed n-dimensional manifold M , any smooth n-form ω can be integrated to
give a complex (or real) number

∫
M
ω. Given a smooth map f : N →M between two closed oriented

n-dimensional smooth manifolds N and M , the pull-back f ∗ω by f of this form can be integrated
on N and we have: ∫

N

f ∗ω = deg(f) ·
∫
M

ω

where deg(f) is an integer called the degree of the map f .
The bilinear map:

Ωp(M)× Ωn−p(M) → C

(α, β) 7→
∫
M

α ∧ β

will later yield a dual pairing between p-th and n − p-th cohomology groups. Notice that when
n = 2k, for two k-forms α and β we have

∫
M
α ∧ β = (−1)

k
2

∫
β ∧ α, so that this bilinear map yields

a symmetric bilinear form on Ωk(M)whenever k is even.

A Riemannian structure on a finite n-dimensional oriented manifold M yields a particular n-form,
the volume form given in a local system of coordinates (x1, · · · , xn) at a point x by:

dvol(x) =
√

detgx dx1 ∧ · · · ∧ dxn = e∗1 ∧ · · · ∧ e∗n
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where detgx is the positive determinant of the matrices representing the metric locally at point x and
where {e∗1(x), · · · , e∗n(x)} is an orthonormal basis of T ∗xM equipped with the inner product induced
by the Riemannian metric.
Given an n-dimensional Riemannian manifold (M, g), the Hodge star operator is defined pointwise
as the linear operator

∗ : ΛpT ∗xM → Λn−pT ∗xM

on a positively oriented orthonormal local basis {e∗1, · · · , e∗n} of T ∗xM by:

e∗i1 ∧ · · · ∧ e
∗
ip ∧ ?(e

∗
i1
∧ · · · ∧ e∗ip) = dvol(x)

for any i1 < · · · < ip. This definition is independent of the choice of oriented orthonormal basis and
one can check that ?2 = (−1)p(n−p) on ΛpT ∗xM.
The Hodge ? operator induces a duality on forms Ωp(M) ' Ωn−p(M) called Hodge duality. When M
is closed, the above bilinear form on differential forms yields the following bilinear form on Ωp(M):

〈α, β〉 =

∫
M

〈α, β〉xdvol(x) =

∫
M

α(x) ∧ ?β(x).

When M is a complex manifold, just as TM C = T 1,0M ⊕ T 0,1M , the complexified space of forms
Ωr(M)⊗ C splits:

Ωr(M)⊗ C =
r∑
p+q

Ωp,q(M),

where Ωp,q(M) is the space of smooth antisymmetric sections of the tensor bundle
(
(T 1,0M)

∗)⊗p ⊗(
(T 0,1M)

∗)⊗q
.

A Hermitian metric h on M is a (1, 1) covariant two tensor which, if M is n-dimensional reads
in local coordinates:

h(z) =
∑

1≤i,j≤n

hjkdzj ⊗ dz̄k.

There is a 2-form associated to it called the fundamental (1, 1) form:

ω(z) := −Imh =
i

2

∑
1≤i,j≤n

hjkdzj ∧ dz̄k

which plays an important role for Kähler structures we shall come across later in these notes.

2.5 De Rham and Dolbeault cohomology

Useful references are [6], [38].

Exterior differentiation on forms on a given smooth manifold M is defined as follows:

Definition: The derivation f → Df defined on the space of smooth functions on a manifold M
extends to a unique linear map d : Ω(M)→ Ω(M) such that

i) d sends Ωp(M) to Ωp+1(M),

ii) d is a graded derivation i.e. it satisfies the (graded) Leibniz rule:

d(α ∧ β) = (dα) ∧ β + (−1)|α|α ∧ dβ ∀α, β ∈ Ω(M),
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iii) (d ◦ d) f = 0 ∀f ∈ C∞(M).

We set df = Df for f ∈ C∞(M) = Ω0(M).

For smooth vector fields U0, · · · , Up on M , the exterior differentiation reads:

dα(U0, · · · , Up) =

p∑
k=0

(−1)kUi

(
α(U0, · · · , Ûk, · · · , Up)

)
+

∑
1≤k,l≤p

(−1)k+lα
(

[Uk, Ul], U0, · · · , Ûk, · · · , Ûl, · · · , Up
)

where the “hat” above the vector fields means we have deleted them.
In local coordinates around a point x of an n-dimensional manifold M , the exterior differentiation
on a p form α(x) = αi1···ip(x) dxi1 ∧ · · · ∧ dxip reads:

d (α) (x) =
n∑
k=1

∂xkαi1···ip(x) dxk ∧ dxi1 ∧ · · · ∧ dxip .

Remark: As can be seen from the above explicit descriptions of d, the requirement that d◦d vanishes
on functions actually implies (using the Leibniz rule and the fact that d coincides on functions with
D) that it vanishes on all forms i.e.

d ◦ d(α) = 0 ∀ α ∈ Ω(M).

On a compact finite dimensional oriented Riemannian manifold, one can define the adjoint d∗ of
d setting:

〈dα, β〉 = 〈α, d∗β〉 ∀α ∈ Ωp(M),∀β ∈ Ωp+1(M),

so that by Stokes’ formula we have:

〈α, d∗β〉 =

∫
M

α ∧ d∗β

=

∫
M

dα ∧ ?β

=

∫
M

d(α ∧ ?β)− (−1)p
∫
M

α ∧ d ∗ β

= (−1)p+1

∫
M

α ∧ d ? β(
since

∫
M

dγ = 0

)
= (−1)p+1(−1)(n−p)(n−(n−p))

∫
M

α ∧ ? ? d ∗ β

= (−1)np+1

∫
M

α ∧ ?(?d ∗ β)

= (−1)np+1〈α, ?d ? β〉

Thus on Ωp(M) we get:
d∗ = (−1)np+1 ? d ? .
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Combining d and d∗ yields a Laplacian on forms given by

∆ = d∗ ◦ d+ d ◦ d∗

which restricts to operators ∆p = d∗p ◦dp +dp−1 ◦d∗p−1 on each Ωp(M) where dp : Ωp(M)→ Ωp+1(M).

A form α is closed whenever dα = 0, and exact whenever there is a form β such that α = dβ.
Since d ◦ d = 0, exact forms are closed but closed forms are not expected to be exact, they are only
locally exact by the Poincaré lemma. The obstruction to their global exactness is measured by the
de Rham cohomology groups:

Hp(M) := Ker(d|Ωp(M))/R(d|Ωp−1(M))

where R(d|Ωp−1(M)) denotes the range of the map d|Ωp−1(M). The theory of elliptic operators on
closed manifolds which we describe later in these notes shows that these cohomology groups are
finite dimensional. The dimension of Hp(M) is called the Betti number of M .
If M has dimension n, the sequence

0→ Ω0(M)→d · · ·Ωk(M)→d Ωk+1(M)→d · · · →d Ωn(M)→d 0

defines a differentiable complex and the cohomology measures in how far this complex is not exact.
When M is a complex manifold, the exterior differentiation splits d = ∂ + ∂̄ where ∂ : Ωp,q → Ωp+1,q

and ∂̄ : Ωp,q → Ωp,q+1 and it follows from the relation d ◦ d = 0 that δ ◦ δ̄+ δ̄ ◦ ∂ = 0, ∂2 = 0, ∂̄2 = 0.
Since ∂̄2 = 0,a ∂̄-exact form α (i.e.α = ∂̄β) is ∂̄-closed (i.e. ∂̄α = 0) and there is an associated
complex

0→ Ω0,0(M)→ Ω0,1(M)→ Ω0,2(M)→ · · · ,

the Dolbeault complex. A ∂̄-closed form is however generally not δ̄-exact and the obstruction to the
extacness of closed forms is measured by the Dolbeaut cohomology groups:

Hp,q(M) := Ker(∂̄|Ωp,q(M))/R(∂̄|Ωp,q−1(M))

where R(d|Ωp,q−1(M)) denotes the range of the map ∂̄|Ωp,q−1(M). The Hodge decomposition theorem
gives a relation between the de Rham and the Dolbeault cohomology groups:

Hk(M) = ⊕p+q=kHp,q(M).

Using the theory of elliptic operators on closed manifolds one can show that these cohomology groups
are finite dimensional; their dimensions are called the Hodge numbers hp,q := dimHp,q(M).

From the Hodge decomposition theorem it follows that the Betti numbers relate to the Hodge num-
bers as follows:

bk =
∑
p+q=k

hp,q.

Moreover, since hp,q = hq,p (by Hodge symmetry), this relation shows that the Betti numbers on a
closed Kähler manifold are always even. There are many more interesting properties of these Hodge
numbers which we cannot discuss here and refer the reader to the litterature.

A Kählerian manifold is a complex manifold M which can be equipped with a positive definite
(1, 1) form ω called a Kählerian metric which is closed, i.e. such that dω = 0.
Example: The projective space Pn(C) has a natural Kählerian metric called the Fubini Study metric
defined by:

π∗ω =
1

2π
∂∂̄log

(
|η0|2 + |η1|2 + · · ·+ |ηn|2

)
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where the ηi, i = 1, · · · , n are the coordinates on Cn+1 and where π : Cn+1/{0} → Pn(C) is the
canonical projection. Let z = ( ζ1

ζ0
, · · · , ζn

ζ0
) be the homogeneous coordinates of the chart Cn ⊂ Pn(C)

then:

ω =
1

2pi
∂∂̄ log(1 + |z|2).

Using the Hodge decomposition theorem, on a closed kählerian manifold M , one can relate the de
Rham cohomology groups to the Dolbeault cohomology groups by:

Hk(M) = ⊕p+q=kHp,q(M).

2.6 Covariant derivatives and geodesics

Useful references are [16], [24], [25], [27], [30].

Covariant derivatives extend the exterior differentiation to sections of vector bundles.

Definition: Given a vector bundle π : E → B based on a manifold B, a covariant derivative
(also abusively called connection) on E is a differential operator:

∇ : C∞(E)→ C∞(T ∗B ⊗ E)

which satisfies the Leibniz rule:
∇(fσ) = df ⊗ σ + f∇σ.

It extends in a unique way to the space Ω(B,E) of E-valued forms on B:

∇(α ∧ θ) := dα ∧ θ + (−1)|α|α ∧∇θ ∀α ∈ Ω(B), β ∈ Ω(B,E).

Notice that
∇fUσ = f∇Uσ

and
∇U+V σ = ∇Uσ +∇V σ ∀σ ∈ C∞(E), f ∈ Ω0(B), U, V ∈ TB.

A covariant derivation ∇ on a vector bundle E induces a dual connection ∇∗ on the dual bundle E∗,
given by the Leibniz rule using the duality product:

d〈σ, ρ〉 = 〈∇σ, ρ〉+ 〈σ,∇∗ρ〉, ∀σ, ρ ∈ C∞(E),

and a connection ∇Hom on the bundle Hom(E) ' E∗ ⊗ E defined by:

∇Hom := ∇∗ ⊗ 1 + 1⊗∇.

For a trivial vector bundle E → B, any connection is given by an Hom(E)-valued one form θ via
the formula ∇ = d + θ. As a consequence, a connection on a general vector bundle can locally be
described by ∇ = d+ θU where now θU is a Hom(E) valued one form on an open subset U ∈ B over
which we have trivialised the bundle. Another consequence is that two connections on E differ by a
(globally defined) Hom(E)-valued one form on B. An easy computation yields that if ∇ = d + θU
locally, then ∇∗ = d− θU and ∇Hom = d+ [θU , ·].

A similar formula to that of the differentiation on ordinary forms holds for a covariant derivative on
E-valued forms α ∈ Ωp(B,E):

∇α(U0, · · · , Up) =

p∑
k=0

(−1)k∇Ui

(
α(U0, · · · , Ûi, · · · , Uk)

)
+

∑
0≤k<l≤p

(−1)k+lα([Uk, Ul], U0, · · · , Ûk, · · · , Ûl, · · · , Up)
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where Ûi means that we have left out the vector field Ui. In particular, for p = 1 and α ∈ Ω1(B) we
have:

∇α(U, V ) = ∇UV −∇VU −∇[U,V ] ∀U, V ∈ C∞(B, TB).

A connection ∇ on a Riemannian (resp. Hermitian) bundle π : E → B based on a manifold B
is Riemannian provided it is compatible with the Riemannian (resp. Hermitian) metric in the fol-
lowing sense:

d〈σ, ρ〉b = 〈∇σ, ρ〉b + 〈σ,∇ρ〉b ∀σ, ρ ∈ C∞(E) ∀b ∈ B

where 〈·, ·〉b is the inner product on the fibre above b.

Given a connection ∇ on a finite n-dimensional manifold M , and given a local system of coordi-
nates (x1, · · · , xn) at a point x ∈M , we define the Christoffel symbols:

∇ ∂
∂xi

∂

∂xj
=

n∑
k=1

Γkij
∂

∂xk
.

These extend to the Banach setting as follows. Let π : E → B be a vector bundle with base B
modelled on a linear Banach space V and fibre modelled on a linear Banach space V1. Let (U, φ,Φ)
be a local trivialization of the bundle E over an open subset U of B. A Christoffel coefficient
corresponding to this trivialization is given by a map:

ΓΦ : Φ(π−1(U))→ L(V × V1, V1)

with the following property. If (W,ψ,Ψ) is another trivialization then

D(Ψ ◦ Φ−1)ΓΦ(φ∗X, τσ) = D2((Ψ ◦ Φ−1)(φ∗X,Φσ) + Γψ ◦ (D(ψ ◦ φ−1)X,D(Ψ ◦ Φ−1)

where X is a vector at a point of U ∩W and σ a section of E. Under this assumption, it makes
sense to define a connection ∇ : C∞(E)→ C∞(T ∗M ⊗E) in a local trivialization (U, φ,Φ) using the
Christoffel symbol ΓΦ by:

Φ(∇Xσ) = D(Φσ).φ∗X + ΓΦ(φ∗X,Φσ)

since the latter definition is independent of the choice of local trivialization.

Definition: The torsion of a connection on the tangent bundle TM to a manifold M is given
by:

T (U, V ) := ∇UV −∇VU − [U, V ] ∀U, V ∈ C∞(M,TM).

In a system of local coordinates (x1, · · · , xn) around a point x of a finite n-dimensional manifold M ,
setting ei = ∂

∂xi
we have T (ei, ej) = ∇eiej −∇ejei so that if the torsion vanishes then ∇eiej = ∇ejei,

i.e. Γkij = Γkji.

Notice that whern E = TM is the tangent bundle, in the absence of torsion, i.e. when T = 0
the covariant derivative on forms α ∈ Ωp(M) reads:

∇α(U0, · · · , Up) =

p∑
k=0

(−1)k∇Ui

(
α(U0, · · · , Ûi, · · · , Uk)

)
+

∑
0≤k<l≤p

(−1)k+lα(∇UkUl −∇UlUk, U0, · · · , Ûk, · · · , Ûl, · · · , Up).
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Proposition-Definition: There is a unique connection on a Riemannian manifold which has van-
ishing torsion and is compatible with the (strong) Riemannian metric; it is called the Levi-Civita
connection.
Idea of proof: We first write

U〈V,W 〉 = d〈V,W 〉(U) = 〈∇UV,W 〉+ 〈V,∇UW 〉

as well as circular combinations of this expression. Using the fact that the torsion vanishes yields
the following expression of 〈∇UV,W 〉:

2〈∇UV,W 〉 = 〈[U, V ],W 〉 − 〈[V,W ], U〉+ 〈[W,U ], V 〉
+ U〈V,W 〉+ V 〈W,U〉 −W 〈U, V 〉.

in terms of differentials of the inner product 〈U, V 〉, 〈V,W 〉 and 〈U,W 〉. The existence and unique-
ness of ∇UV then follows from Riesz’s theorem.
A torsion free connection relates to the exterior differentation:

Proposition: If ∇ is a torsion free connection on M then the exterior differential coincides with
ε ◦ ∇ where ε is the exterior multiplication. In particular, if ∇ is the Levi-Civita connection on a
Riemannian manifold M , then d = ε ◦ ∇.

Idea of the proof: Setting d̃ = ε ◦ ∇ one proves that d̃2f = −〈T, df〉 for any smooth function f
on M where T is the torsion. Since the torsion vanishes by assumption, this will prove that d̃2f = 0.
One is then left to check the Leibniz property for d̃ and the fact that it coincides with the ordinary
differentiation on smooth functions in order to conclude that it coincides withg d̃ on all differential
forms.

A Hermitian complex manifold (M,h) can be equipped with a Riemannian metric g(·, ·) := h(·, J ·)
where J is the almost complex structure on M induced by the complex structure.
Proposition: A Hermitian complex manifold M is Kählerian provided the bundles T 1,0M and
T 0,1M are preserved by the Levi-Civita connection ∇, or equivalently provided the Levi-Civita con-
nection ∇ is compatible with the complex structure J i.e. [∇, J ] = 0.

Idea or the Proof: Recall that if M is a complex manifold with a Hermitian metric h, the real part of
h restricted to the tangent bundle TM is a Riemannian metric g on M , while the imaginary part ω
restricted to TM is a two form on M . For any two vector fields on M , we have g(U, V ) = ω(JU, V )
where J is the almost complex structure on M . Letting 〈·, ·〉 denote the Riemannian scalar product,
we have:

〈(∇UJ)V,W 〉 = 〈∇U(JV ),W 〉+ ω(∇UV,W 〉
= −Uω(V,W ) + ω(∇UV,W ) + ω(V,∇VW )

= −(∇Uω)(V,W )

Since ∇ is torsion free, d = ε ◦∇ where ε is the exterior product and dω(U, V,W ) = (∇U)ω(V,W )−
(∇V )(W,U) + (∇W )(U, V ), which vanishes as a consequence of the condition ∇J = 0. Hence ∇J ⇒
dω = 0.
On the other hand, the formula for the Levi-Civita connection applied to the holomorphic coordinate
system zi yields:

2〈∇∂
zj
∂zk , ∂zl〉 = 0

2〈∇∂
z̄j
∂zk , ∂zl〉 = i dω(∂zk , ∂zl , ∂z̄j).
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from which it follows that if dω = 0, then the Levi-Civita connection preserves T 1,0M .

Definition: A geodesic on a Banach Riemannian manifold (M, g) is a smooth curve c : I → M
on M solution of the second order differential equation:

∇ċ(t)ċ(t) = 0

where I is some open interval in IR.

Such a solution exists locally by the theory of differential equations on Banach spaces and there
is a unique solution cx,u determined by the initial conditions c(0) = x, ċ(0) = u ∈ TxM provided
0 ∈ I.
Geodesics correspond to critical points of the energy functional on curves

E(c) =

∫
I

‖ċ(t)‖2 dt =

∫
I

g (ċ(t), ċ(t)) dt

and correspond to curves with minimal length. On IRd equipped with the Euclidean metric, they
correspond to straight lines.

Choosing u in a small enough neighborhood of 0 ensures the existence of the geodesic up to time 1
and we define the exponential map:

exp : U ⊂ TxM → M

u 7→ cx,u(1)

which yields, by the local inverse map theorem (see section 1.1), a local diffeomorphism from U onto
its range. The injectivity radius at a point in M is the largest radius ρ for which the exponential is
a diffeomorphism onto the ball of radius ρ centered at that point.

The Riemannian manifold is complete provided all geodesics are defined on IR, in which case the
exponential map is defined on the whole tangent bundle. A compact Riemannian manifold is com-
plete.

The exponential map defined on Lie groups can in some cases be described as an exponential map
built from geodesics, choosing an adapted left invariant metric on the group, e.g. on GL(n, IR) the
one given by the inner product 〈A,B〉 := tr(AtB) on gl(n, IR).

2.7 The curvature and characteristic classes

Useful references are [6], [31], [37], [39], [48].

Definition: The curvature of a covariant derivation is given by the Hom(E)-valued two form

ΩE =
(
∇E
)2 ∈ Ω2(B,Hom(E)).

Applying the above formula for connexions extended to forms, to the 1-form∇Eσ with σ ∈ C∞(B,E)
yields Equivalently,(

ΩE(U, V )σ
)

(U, V ) = [∇E
U ,∇E

V ]σ −∇E
[U,V ]σ ∀U, V ∈ C∞(B, TB).

An easy computation shows that the curvature is a tensor, meaning by this that ΩE(U, V )f =
fΩE(U, V ), although one could expect apriori from the above formula that f might get differentiated.
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It is clear from the definition of the curvature that the Bianchi identity

[∇E,ΩE] = 0

holds.
Writing the connection on a vector bundle in a trivialization over an open subset U of the base
manifold ∇E = d+ θEU , the curvature reads

ΩE = dθEU + θEU ∧ θEU .

Lemma: Let E be a Riemannian vector bundle equipped with a connection ∇E which is compatible
with the metric. Its curvature ΩE is an so(E)-valued 2-form on M where so(E) is the subbundle of
Hom(E) of antisymmetric morphisms of E.

Proof Let U, V be two vector fields on the base manifold:

0 = (UV − V U − [U, V ])〈σ, ρ〉
= U〈∇E

V σ, ρ〉+ U〈σ,∇E
V ρ〉

− V 〈∇E
Uσ, ρ〉 − V 〈σ,∇E

Uρ〉
− 〈∇E

[U,V ]σ, ρ〉 − 〈σ,∇E
[U,V ]ρ〉

= 〈∇E
U∇E

V σ, ρ〉+ 〈∇E
V σ,∇E

Uρ〉
+ 〈∇E

Uσ,∇E
V ρ〉+ 〈σ,∇E

U∇E
V ρ〉

− 〈∇E
V∇E

Uσ,∇E
V ρ〉 − 〈σ,∇E

U∇E
V ρ〉

− 〈∇E
V σ,∇E

V ρ〉 − 〈σ,∇E
V∇E

Uρ〉
− 〈∇E

[U,V ]σ, ρ〉 − 〈σ,∇E
[U,V ]ρ〉

= 〈ΩE(U, V )σ, ρ〉+ 〈σ,ΩE(U, V )ρ〉

so that 〈ΩE(U, V )σ, ρ〉 = −〈σ,ΩEU, V ρ〉 which shows that ΩE(U, V ) is antisymmetric.
Let now E = TM where M is a Riemannian manifold. We drop the upper index E in the notation.

The Ricci tensor of a connection ∇ on a Riemannian manifold M is defined by

R(X, Y,W,Z) := 〈Ω(X, Y )W,Z〉

where X, Y,W,Z are vector fields on M and 〈·, ·〉 the inner product induced by the Riemannian
structure. We have:

R(X, Y,W,Z) = −R(Y,X,W,Z) = −R(X, Y, Z,W )

and
R(X, Y,W,Z) = R(W,Z,X, Y ).

When M is finite dimensional, the Ricci curvature is given by the trace of the operator Ω(X, ·)Y ,
i.e. Ricc(X, Y ) := tr(Ω(X, ·)Y ). The scalar curvature is the trace of the Ricci curvature s(x) =∑n

i=1 Ricc(ei(x), ei(x)), where (ei(x))i∈IN is any local orthonormal frame of TxM .

A connection with vanishing curvature is called a flat connection. When the Ricci curvature vanishes,
the manifold is called Ricci flat.

The ordinary differentiation on sections of a trivial bundle is flat since d ◦ d = 0.

Characteristic classes:
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• Complex vector bundles: Recall that the trace tr : gln(C)→ C on matrices has the following
invariance property:

tr(C−1AC) = tr(A) ∀C ∈ Gln(C).

As a consequence it extends to a morphism of cvector bundles:

tr : Hom(E)→ B × C

where E is a vector bundle based on B. It furthermore extends to Hom(E)-valued forms
setting:

tr(α⊗ σ) := αtr(σ) ∀α ∈ Ω(B), σ ∈ C∞(E).

Differentiating the above invariance property yields a cyclicity property:

tr ([A,B]) = 0 ∀A,B ∈ gln(C).

Combining the cyclicity of the trace with the Bianchi identity, provides closed forms tr
((

ΩE
)k)

.

Indeed:
d tr(Ωk) = tr(Ωk−1dΩ) = tr(Ωk−1[∇,Ω]) = 0,

where we have used the local description ∇ = d + [θU , ·] of a connection on Hom(E) induced
by a connection on E, combined with the cyclicity of the trace tr([A,B]) = 0 to establish the
second identity. In the above formula, the product Ωk uses both the exterior product and the
composition in Hom(E) since Ω is a Hom(E)-valued form. This formula extends replacing the
k-th power by any analytic function f so that tr(f(Ω)) (which is in fact a polynomial expres-
sion in Ω of degree

[
n
2

]
, the integer part of half the dimension of the manifold M) is closed

in the de Rham cohomology. Its cohomology class, called Chern-Weil cohomology class, is in
fact independent of the choice of connection, as can be shown using similar arguments to those
used to show that it is closed.

Different Chern-Weil classes carry different names according to the choice of the function f .
As an example, the first Chern form is obtained from f(x) := x,

r1(∇) := tr(Ω),

the Chern character is obtained from f(x) := e−x,

ch(∇) := tr(e−Ω)

where we have set Ω = ∇2 for the curvature. The exponential map involves wedge products as
well as composition of morphisms since Ω is a Hom(E)-valued two-form. Notice that r1(∇) =
−[ch(∇)][2], namely minus the part of degree 2 of the form ch(∇).

• Real vector bundles: Since the trace vanishes on antisymmetric matrices, the trace is not very
useful to define characteristic classes from real vector bundles for which the curvature is an
antisymmetric tensor. We therefore use another tool to define characteristic classes form on
real vector bundles, namely the Pfaffian, which in turn is related to another very useful tool,
Berezin integration.

Let G = SOn(IR) and γ = son(IR), there is a one to one correspondance:

Λ2IRn ↔ son(IR)

aijei ∧ ej ↔ (aij)
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where ei, i = 1, · · · , n is an orthonormal basis for the canonical scalar product on IRn.

Definition: Berezin integration on ΛIRn is the linear map defined by:

T : ΛIRn −→ IR

α 7→ e∗i ∧ · · · e∗n(α)

where e∗i , i = 1, · · · , n is the dual basis e∗i (ej) = δij.

Notice that T vanishes on ΛpIRn for any p < n so that for any v ∈ IRn and any α ∈ ΛIRn,
T (i(v)α) = 0 where i(v) is the interior product. The fact that T yields a linear map which
vanishes on derivations justifies the terminology ”integral” (analogy with Stoke’s theorem).

Given a real metric vector bundle E of rank n based on a manifold M , Berezin integration
generalises to a vector bundle morphism:

T : ΛE −→ M × IR
α 7→ e∗i ∧ · · · e∗n(α)

where e∗i , i = 1, · · · , n is now an orthonormal frame of E. T in turn induces a map on sections
(denoted by the same symbol) T : C∞(M,ΛE)→ C∞(M, IR) in an obvious way.

Definition:

Under the above assumptions on E, the Pfaffian of A = (aij) ∈ C∞(M,Λ2E ' so(E)) is
the real valued function on M defined by:

Pf(A) := T
(
e

1
2

∑n
i,j=1 aijei∧ej

)
= T

(
e
∑n
i<j;i,j=1 aijei∧ej

)
.

In some cases, the Pfaffian is identified to the top form Pf(A)e1 ∧ · · · en.

We state the following result without proof, leaving the proof as an exercise.

Lemma

Given A = (aij) ∈ C∞(M,Λ2E ' so(E)), if the rank n of E is even, setting n = 2k we
have:

Pf(A) =
(−1)k

2kk!

∑
σ∈Σn

ε(σ)aσ(1)σ(2) · · · aσ2k−1σ2k

and the Pfaffian vanishes if the rank of E is odd. Here ε(σ) denotes the signature of σ.

Given a function with Taylor expansion at all orders at 0, namely f(z) =
∑K

k=0
f (k)

k!
(0)zk +

o(zK) ∀K ∈ IN and an oriented metric real vector bundle (E,∇E) equipped with a connec-
tion compatible with the metric, similarly to the construction of characteristic classes via the
trace, here again, using the Bianchi indentity and the properties of the Pfaffian, one can show
that P (Ω) = Pf

(
f(ΩE)

)
defines a closed form with cohomology class independent of the choice

of connection.

Choosing f(z) = −z yields the Euler class

e(∇E) = Pf(−ΩE) ∈ ΩN(M)
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where N is the rank of E. The Euler class vanishes if N is odd as a consequence of the vanishing
of the Pfaffian in odd dimensions. Moreover, as a consequence of the multiplicativity of the
Pfaffian on tensor products, this characteristic class obeys the following property:

e(∇E⊕F ) = e(∇E) ∧ e(∇F ).

If M is an oriented Riemannian surface, and (E = TM,∇TM) is the tangent bundle equipped
with the Levi-Civita connection, then

e(∇TM) = κ dvol

where κ is the Gaussian curvature.

Choosing f(z) =
z
2

shz
2

yields the Â-genus

Â(∇E) = Pf

(
ΩE

2

shΩE

2

)

and f(z) =
z
2

thz
2

the L-genus

L(∇E) = Pf

(
ΩE

2

thΩE

2

)
.

As a consequence of the multiplicativity of the Pfaffian on tensor products, these characteristic
classes obey the following property:

Â(∇E⊕F ) = Â(∇E) ∧ Â(∇F ); L(∇E⊕F ) = L(∇E) ∧ L(∇F ).

3 Principal bundles

3.1 Classification of principal bundles

Useful references are [34], [19], [48].

Definition: A (Banach) Ck-principal G-bundle based on a Ck-manifold B, where G is a Banach Lie
group is a (Banach ) Ck-fibre bundle P based on B with typical fibre G, such that if Φ and Ψ are two
trivializations above some open subset U ∈ B, there exists a local map γ : U ⊂ B → G verifying:

Φb ◦Ψ−1
b = γ(b) ∀b ∈ B.

G is called the structure group of P .

Notice that letting the group G acts on itself by left translation Lg : h → g · h and letting (U, φ,Φ)
and (W,ψ,Ψ) be two local trivialization with b ∈ U ∩W , we have:

Φb(pb) = g · Φb(qb)⇒ Ψb(pb) = γ(b)−1gγ(b)Ψb(qb)

for any g ∈ G, pb, qb ∈ Eb where Eb is the fibre over b. Thus, a change of trivialization induces an
inner automorphism g 7→ γ(b)−1gγ(b) of G.

Given a Ck-morphism φ : B′ → B between two Ck-manifolds, the pull-back φ∗P to B′ of a Ck-
principal G-bundle on B is a Ck-principal G-bundle on B′.
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Let us now restrict ourselves to C0-bundles. One can show that two homotopic maps φ : B′ → B
and ψ : B′ → B give rise to equivalent principal G-bundles φ∗P ' ψ∗P .
One can therefore associate to the homotopy class [φ] ∈ [B′, B] of a map φ : B′ → B the equivalence
class of φ∗P . This leads to the following definition.

Definition: A classifying space for a Lie group G is a connected topological space BG together
with a principal G-bundle PG → BG, such that for any compact Hausdorff space X, there is a
one to one correspondence between the homotopy classes [φ] of maps φ : X → BG and equivalence
classes of principal G-bundles on X. A principal G-bundle PG on BG yields a pull-back bundle
φ∗PG on X. The base space BG is defined up to homotopy type and the bundle PG→ BG is called
the universal principal G-bundle.

A principal G-bundle P → B with the property that the total space is contractible yields a classifying
space B for G. An important example is the Grassmannian Gn(C∞) := ∪∞N=nGn(CN) which yields
a classifying space for the unitary group U(n) so that BU(n) = Gn(C∞).

Letting πn(G) := [Sn, G] denote the n-th homotopy group of G, the long exact sequence of ho-
motopy groups:

· · · → πn(P )→ πn(B)→ πn−1(G)→ πn−1(P )→ · · ·
yields πn(B) ' πn−1(G), using the fact that πn(P ) = {1}. Singular cohomology is needed for further
information on the principal bundle (we refer the reader to any classical text on algebraic topology).
A universal characteristic class for a principal G-bundle is a non zero class in the singular coho-
mology H∗(BG,Λ) with coefficients in a ring Λ. Given a class c ∈ Hk(BG,Λ), and any principal
G-bundle P → B, there is a map φ : B → BG such that P ' φ∗PG and c(P ) := φ∗(c) ∈ Hk(B,Λ) is
the c-characteristic class of P . In particular the cohomology ring H∗(BU(n), ZZ) is a ZZ-polynomial
ring with canonical generators ck ∈ H2k(BU(n), ZZ), called the universal k-th Chern class. Thus to
any U(n)-principal bundle P → B, classified by a map φ : B → BU(n), one can associate the k-th
Chern class ck(P ) := φ∗(ck). The relation to the Chern classes described at the end of the previous
chapter will become clear once we have set up a correspondence between vector bundles and principal
bundles; via this correspondence, the Chern class ck(P ) can be seen as a Chern class on a complex
rank n vector bundle E.

3.2 From group actions to principal bundles

Useful references in view of the applications we have in mind for quantum field theory are [3], [8],
[14], [28], [12], [51]. Foundations for this type of slice theorem were set up in [43].

Let G be a Banach Lie group acting on the right on a Banach manifold X via a smooth action:

Θ : G×X → X

(g, x) 7→ x.g := Rg(x)

i.e. Rg·g′ = Rg ◦Rg′ for g, g′ ∈ G.
The action is proper provided the map

Ξ : G×X → X ×X
(g, x) 7→ (x · g, x)

is proper, i.e. preimages of compact sets have compact closure.
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If G is a compact Lie group the action is proper. To see this, we show that one can extract a
convergent subsequence from any sequence (xn, gn) ∈ G×X such that Ξ((xn, gn)) = (xn ·gn, xn) ∈ K
where K is a compact subset of X × X. K being compact so is its projection onto the second
component and we can extract from (xn) a convergent subsequence (xφ(n)). G being compact, there
is a subsequence of (gφ(n)) which we denote by the same symbol for simplicity, converging to some
g ∈ G. The subsequence (xφ(n), gφ(n)) therefore does the job.

The action is free provided it has no fixed points:

∃x ∈ X, x · g = x⇒ g = e.

The action is isometric provided it leaves the metric (given by inner products 〈·, ·〉x on the fibre TxX)
invariant:

〈DRgU,DRgV 〉x·g = 〈U, V 〉x ∀U, V ∈ TxX.

The metric is said to be compatible with the group action.

Notation: For x ∈ X we define the map

θx : G → Ox

g 7→ x · g

that sends an element of G to an element of the orbit Ox of x.
The freedom of the action Θ corresponds to the injectivity of θx for any x ∈ X.

Theorem: Let G be a Hilbert Lie group acting on the right on a (strong) Riemannian (Hilbert)
manifold X via an isometric action:

Θ : G×X → X

which is smooth, free and proper.
Provided for any x ∈ X the tangent map τx := Deθx has a closed range, then

1) the orbits are closed submanifolds of X and θx : G→ Ox is a diffeomorphism of manifolds,

2) the quotient space X/G has a smooth Hilbert structure,

3) the projection π : X → X/G yields a principal fibre bundle.

Remark: In the finite dimensional case, there is no need for the splitting condition on τx which is
automatically fulfilled. As we shall see in the next chapter, in the more general Hilbert setting, a
Fredholm operator τx fulfills the additional requirement that the range be closed.

Proof: Let us make two preliminary trivial but useful remarks.

- Since Rg ◦ Rg−1 = Id = Rg−1 ◦ Rg we have DRg ◦DRg−1 = Id = DRg−1 ◦DRg so that DRg is
invertible and DR−1

g = DRg−1 .

- Dgθx ◦DRg = DRg ◦ τx since for u ∈ Lie(G) we have:

DgθxDRgu =
d

dt |t=0

(xetu·g)

= DRg
d

dt |t=0

(xetu)

= DRgτxu.
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i) Θ being proper, θx is a closed mapping. Indeed, if θx(gn) converges to y,then (x, gn · x) con-
verges to (x, y) and the properness of the action implies the existence of a subsequence gφ(n)

converging to some g ∈ G. The action being continuous, gφ(n) · x converges to y = g · x. Thus
θx is a homeomorphism onto its range Ox.

Let us check that Dgθx is injective. Otherwise, there is some u 6= 0 ∈ Lie(G) such that
Dgθx(u · g) = 0. But since Dgθx = DRg ◦ τx ◦DR−1

g , this would imply that τxu = 0. Then, for
any t0 ∈ IR

d

dt |t=t0
x · etu =

d

dt |t=0

x · etu · et0u

= DRg0

d

dt |t=0

x · etu

= DRg0(τxu)

= 0

where we have set g0 := exp t0u. This would imply that θx(gt) is constant which contradicts
the freedom of the action.

Let us check that the range of the map Dθx is closed. This follows from R(Dgθx) = DRgR(τx)
(see the second preliminary remark) combined with the fact that τx has closed range. Moreover,
since Rg is an isometry it preserves orthogonality and

R(Dgθx)
⊥ = DRg (R(τx))

⊥ so that we have the following orthogonal splitting:

Tx·gX = R(Dgθx)⊕DRg (R(τx))
⊥ .

Thus θx is an injective immersion which is also a homeomorphism onto its image. The inverse
mapping theorem then implies it is a diffeomorphism G ' Ox and the orbit Ox is a submanifold
of X.
The tangent space of Ox at point y = x · g is R(Dgθxg). This finishes the proof of point 1) of
the Theorem.

ii) We now check points 2) and 3). Let Ux be an open neighborhood of x in R(τx)
⊥, small enough

to build the submanifold Sx := expx(U) of X using the exponential map expx : U → Vx ⊂ X
at point x, where U is an open neighborhood of the zero section of the tangent bundle TX and
Vx an open neighborhood of x ∈ X. Since the exponential map defines a local diffeomorphism,
Sx inherits a manifold structure which by construction has tangent space at point x given by
Nx(Ox) := R(τx)

⊥ where N stands for normal, Nx(Ox) being the fibre above x of the normal
bundle to the orbit Ox.

The action being continuous, free and proper, one can chose U small enough so that

(Sx) .g ∩ Sx 6= φ⇔ g = e. (1)

Indeed, otherwise, we could find a sequence (un) ∈ Nx(Ox) with norm ‖un‖ ≤ 1
n

such that both
(xn) and (xn · gn) converge to some x. But in that case, the properness of the action yields
the existence of a subsequence (gφ(n)) converging to some g ∈ G. The continuity of the action
then implies that in the limit x·g = g. But the action being free, this implies in turn that g = e.

It follows from (1) that the local slice Sx is in one to one correspondence with a subset Ux̄
of the quotient space X/G := B. Equipping B with the quotient topology turns the projection
map π : X → B into a continuous map and yields a homeomorphism π : Sx → Ux̄. The mani-
fold structure on Sx then yields a local chart over the neighborhood Ux̄ of x̄ ∈ B. Patching up
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such local trivializations yields a smooth atlas on B with transition maps obtained from the
exponential maps.

This quotient manifold inherits a metric structure from the G-invariant structure on X. Given
Ū , V̄ ∈ Tx̄B we set:

〈Ū , V̄ 〉x̄ := 〈U, V 〉x
for any x in the fibre above x̄ and any U, V ∈ TxX such that Dπ(U) = Ū ,Dπ(V ) = V̄ . Since
the metric is G-invariant, this is independent of the choice of x and of U and V .
The above local charts induce local trivializations for the projection π : X → B so that we can
equip X with a G-principal bundle structure over B. Locally we have:

X|Ux̄ ' Sx̄ ×G.

3.3 From vector bundles to principal bundles and back

Useful references are [6], [27].

To a smooth vector bundle E → B based on a manifold B with typical fibre a Banach space
V , we associate a principal bundle GL(E) → B called the associated frame bundle with structure
group G := GL(V ) and fibre above b ∈ B given by:

GLb(E) := {Lb : V → Eb, continuous and one to one}.

(Recall from the open mapping theorem that it is a homeomorphism).
Letting

(φ,Φ) : E|U → U × V
(b, u) 7→ (φ(b),Φbu)

be a local trivialization of E above an open subset U of B, a local trivialization (φ, Φ̄) of GL(E)
above U is given by

GL(E)|U → U ×GL(V )

(b, Lb) 7→
(
φ(b), Φ̄b(Lb) := Φb ◦ Lb

)
.

Given two local trivializations (φ,Φ) and (ψ,Ψ) of E and hence two induced trivializations (φ, Φ̄),
(ψ, Ψ̄) of GL(E) we can build a map:

ρ : U → GL(V )

b 7→ Ψ̄b ◦ Φ̄−1
b : L→ Ψb ◦ Φ−1

b ◦ Lb

A Banach vector bundle E of class Ck (resp. C∞) is trivial if and only ifGL(E) admits a global section
of class Ck (resp. C∞). Indeed, a global α section of class Ck (resp. C∞) yields a diffeomorphism:

E → B × V
(b, ub) 7→ (b, α(b)(ub)).

If E is a rank n vector bundle, a global section of class Ck (resp. C∞) of the principal bundle GL(E)
corresponds to a family of frames (e1(b), · · · , en(b)) of class Ck (resp. C∞) parametrized by B and
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the section α yields the coordinates αi(b), i = 1, · · · , n of the vector ub in the basis (e1(b), · · · , en(b))
of the fibre Eb above b.

When E = TM , the tangent bundle to a manifold M of class Ck (resp. C∞), the existence of
a global section of GL(E) is a constraint on the manifold M and we say that M is Ck- (resp. C∞-)
parallelizable. If we only require this section to be continuous, it is a topological constraint. A
Lie group is clearly C∞-paralellizable since left (or right) action Lg : h 7→ g · h (or Rg : h 7→ h · g)
of the group on itself induces a smooth parallelization Lg : Lie(G)→ TgG (resp. Rg : Lie(G)→ TgG).

A result by Kuiper [25] tells us that given a Ck (resp. smooth) Hilbert vector bundle E → B,
the associated frame bundle GL(E) admits a global C0 section. Thus any Hilbert manifold is C0-
parallelizable.

Conversely, given a principal bundle with structure group G and a representation ρ : G→ Diff(V )
on a Banach space V , we can build the associated vector bundle:

P ×ρ V := P × V/∼

where ∼ is the equivalence relation defined by

(p, v) ∼ (p′, v′)⇔ ∃g ∈ G, p = p′ · g and v′ = ρ(g)v

so that (p · g, v) and (p, ρ(g)v) get identified. Locally, above an open subset U of the base manifold,
we have:

P ×ρ V|U ' (U ×G)×ρ V ' U × V.

In particular, a vector bundle E with typical fibre V is associated to its frame bundle GL(E) with
structure group GL(V ):

GL(E)×ρ V = E

where ρ is the natural the action of GL(V ) on V .

3.4 Connections on a principal bundle

Useful references are [6], [27], [34], [52].

Given a principal bundle π : P → B with structure group G, and the induced map Dπ : TP → TB,
we call a vector field ξ vertical provided Dπ(ξ) = 0. Let us denote by V TP the subbundle of vertical
vector fields with fibre above p ∈ P given by

V TpP := {v ∈ TpP,Dpπ(v) = 0}.

The map induced by the action of G on P :

τp : Lie(G) → TpP

u 7→ d

dt |t=0

(p · exp(tu))

introduced previously, gives rise to a vertical vector field:

p 7→ ξ(p) := ūp := τp(u),
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called the canonical vector field associated to u. τp : u→ ūp is an isomorphism of Lie(G) onto V TpP .

Definition: A connection on the principal bundle P with structure group G is a smooth splitting

TpP := V TpP ⊕HTpP, ∀p ∈ P

with an equivariance property HTp·gP = DRg(HTpP ) ∀p ∈ P, ∀g ∈ G. HTP is called a horizontal
distribution and HTpP the horizontal tangent space to P at point p. A horizontal distribution HTP
turns the map Dπ : HTP → TB into an ismorphism and we call ξ̃ the horizontal lift of a vector
field ξ on B.
Equivalently, a connection on the principal bundle P is given by a Lie algebra valued one form on
P , ω ∈ Ω1(P,Lie(G)) such that:

(i) ωūp = u ∀u ∈ Lie(G)

(ii) ωp·g = R∗gωp ∀p ∈ P where Rg : p→ p · g corresponds to the action of G on P .

The two formulations are equivalent. Indeed, given a smooth horizontal distribution HTP , any tan-
gent vector field ξ splits in a unique way ξ = ξv ⊕ ξh into a vertical part ξv := τpu for some unique
u ∈ Lie(G), and a horizontal part ξh. ω(ξ) := u defines a unique Lie(G) valued one form ω on
P satisfying requirements (i) and (ii). The curvature of the connection reads Ω := dω + ω ∧ ω. it
measures in how far the splitting TP = V TP ⊕HTP does not respect the Lie algebra structure on
vector fields, Ω(U, V ) = [Ũ , Ṽ ]− ˜[U, V ] where Ũ , Ṽ are the horizontal lifts of the vector fields U and
V .

Conversely, such a one form ω defines a vector bundle HTP := {ξ ∈ TP, ω(ξ) = 0} which has
the required invariance property by property (ii).

There is a natural horizontal distribution HTP = (V TP )⊥ whenever there is a (strong) Riemannian
metric compatible with the action of the structure group G on P .
There is a one to one correspondence between covariant derivations defined on vector bundles E and
connections defined on principal bundles in the following sense.

A connection ω on the principal bundle π : P → B, seen as a horizontal distribution on P , yields
a covariant derivation on the associated vector bundle E. Let X ∈ TbB, b ∈ B and let X̃ be its
horizontal lift. Letting ρ : G→ Aut(V ) be an action of the gauge group G of P on a Banach vector
space V , a section σ of the associated vector bundle P ×G V can be seen locally as a map from an
open subset of B to the vector space V so that it makes sense to set

∇Xσ :=
(
p, X̃σ

)
.

Notice that we implicitly have used the equivariance of the horizontal distribution in this definition.
∇ yields a connection on the associated vector bundle E := P ×G V .

The covariant derivation ∇ is compatible with the metric whenever the horizontal distribution is
given by the orthogonal supplement to the vertical bundle.

Conversely, a covariant derivation ∇E on a vector bundle E with typical fibre V yields a con-
nection on the frame bundle GL(E) (recall that its structure group is GL(V ) with Lie algebra
Lie(G) = Hom(V )). Let us set P = GL(E), the canonical projection π : P → B induces a map
Dpπ : TpB → Tπ(b)B so that given a tangent vector X ∈ TpP , we can set:

ω(X) = ∇Hom(E)
DpπX

,
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where ∇Hom(E) is the covariant derivation induced by ∇E on Hom(E). Here TGL(E), on which the
form ω is defined, is locally seen as U×Hom(V ). Since Hom(E) is also locally seen as U×Hom(V ),
it makes sense to let the covariant derivation on the r.h.s. act on a section of TGL(E).

3.5 Reducing and lifting principal bundles: spin and spinc structures

Useful references are [20], [31], [32], [35].

Definition: Let H be a closed subgroup of a Banach Lie group G. A principal bundle P based on
B with structure group G reduces to a principal bundle with structure group H whenever there is
an atlas of charts (Ui,Φi) for P such that the transition maps have values in the subgroup H. Let
{1} → H → G̃ → G → {1} be an exact sequence of Banach Lie groups. A G-principal bundle P
based on B lifts to a G̃-principal bundle P̃ whenever P̃ reduces to P , where we view G as a subgroup
of G̃ via the isomorphism G̃ ' H ×G.

Notice that a principal bundle reduces to a bundle with structure group H = {1} whenever the
bundle is trivial.

Reducing the structure group is a way to impose geometric constraints on the bundle. In particular,
a real (resp. complex) vector bundle E → B with typical fibre V can be equipped with a (strong)
Riemannian (resp. Hermitian) structure whenever the associated frame bundle GL(E) with structure
group GL(V, IR) (resp. GL(V, C)) reduces to the orthonormal frame bundle, a principal bundle with
structure group O(V ) := {g ∈ GL(V, IR), g∗g = I} (resp. U(V ) := {g ∈ GL(V, C), g∗g = 1}). In
particular, when E := TM where M is an n-dimensional real (resp. complex manifold), then V = IRn

(resp. V = Cn) and M can be equipped with a Riemannian (resp. Hermitian) metric whenever the
frame bundle GL(M) := GL(TM), with structure group GL(n, IR) (resp. GL(n, C)), reduces to the
orthonormal (resp. unitary) frame bundle O(M) (resp. U(M)) with structure group O(n) (resp.
U(n)). Furthermore a real rank n Riemannian vector bundle E is orientable whenever its frame
bundle GL(M) reduces to a principal bundle with structure group SO(n) := {g ∈ O(n), detg > 0}.

Lifting principal bundles is not always possible, as we shall see shortly, when trying to define spin
and spinc structures.

Definition: Let V be a real Euclidean vector space. The algebra C`(V ) over IR generated by
V with the relations:

v · w + w · v = −2〈v, w〉
where 〈·, ·〉 denotes the inner product on V is called the Clifford algebra of V . It can also be seen
as a quotient space C`(V ) = T (V )/{v · v = −2‖v‖2} of the tensor algebra T (V ) = ⊕∞k=1V

⊗k by the
relation v · v = −2‖v‖2. The ZZ-grading on T (V ) induces a natural ZZ2 -grading on C`(V ):

C`(V ) =: C`0(V ) + C`1(V )

into even and odd (Clifford) products.

Given v ∈ V , let c(v) act on the exterior algebra ΛV by

c(v)α := ε(v)α− i(v)α

where ε is the adjoint of the contraction operator i on exterior forms introduced in Section 2.4. Since
it satisfies the relation

c(v)c(w) + c(w)c(v) = −2〈v, w〉
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it extends to an action of C`(V ) on ΛV , which makes ΛV a C`(V )-module. The symbol map
σ : C`(V )→ ΛV is defined by:

σ(a) := c(a)1 ∈ ΛV.

Accordingly, given a Riemannian bundle E based on B with typical fibre V , one can define the bundle
C`(E) of Clifford algebras based on B with typical fibre C`(V ) defined fibrewise by C`(Eb) where
Eb is the fibre above b ∈ B equipped with the inner product induced by the Riemannian structure.

A Clifford module on a Riemannian manifold M is a vector bundle M → M with a Clifford ac-
tion of C`(M) on it:

C`(M)×M → M
(v, σ) 7→ c(v)σ.

A vector field v ∈ C∞(TM) acts on a form α ∈ Ω(M) by the following Clifford action:

c(v)α := ε(v)α− i(v)α,

which extends to an action of sections of the bundle C`(TM) on Ω(M). Thus M := ΛT ∗M the
exterior bundle on M yields a Clifford module. The symbol map sends a section a of C`(M) to
c(a) ∈ Ω(M).

Going back to the algebraic setting, let us assume that V is finite dimensional. The space C`2(V ) :=
c(Λ2V ) is a Lie subalgebra of C`(V ) with bracket given by the commutator of C`(V ). The spin
group Spin (V ) is the group generated by elements in C`0(V ) with norm 1. It can also be seen
as the group obtained by exponentiating the Lie algebra C`2(V ) inside the Clifford algebra C`(V ).
Letting V := IRn, we simply write C`(n) := C`(IRn) and Spin (n) := Spin(IRn).

Here is a very classical result for which we do not give a proof here since it is purely algebraic
and can be found in any text book on spin structures.

Proposition: If dim V > 1, there is an exact sequence of groups:

1→ ZZ2 → Spin(V )→ SO(V )→ 1.

Spin(V ) is therefore a double covering of SO(V ).

Similarly, Spinc(V ) is the subgroup of C`0(V ) ⊗IR C generated by Spin(V ) and the unit circle of
complex scalars. It yields a double covering of SO(V )×S1 and there is an exact sequence of groups:

1→ ZZ2 → Spinc(V )→ SO(V )× S1 → 1.

Spin(V ) is then naturally identified with the subgroup Spin(V )×+
−1 {

+
−1} of Spinc(V ) and

Spinc(V ) ' Spin(V )×+
−1 S

1.

Letting V := IRn, we simply write Spinc(n) := Spinc(IRn).

Definition: An oriented Riemannian rank n-bundle E → B admits a spin (resp. spinc) struc-
ture whenever the bundle SO(E) of oriented orthonormal frames lifts to a principal bundle Pspin(E)
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(P̃spinc(E)) with structure group Spin (n) (resp. Spin c(n)). In particular an n-dimensional oriented
Riemannian manifold M is spin (resp. spinc) whenever its frame bundle GL(TM) admits a spin
(resp. spinc) structure.

The obstruction to the existence of a spin structure on a vector bundle is measured by the sec-
ond Stiefel Whitney class in H2(M,ZZ2). The obstruction to the existence of a spinc structure is
weaker since such a structure exists whenever this second Stiefel-Whitney class is a reduction mod-
ulo 2 of an integral class c ∈ H2(M,ZZ2), i.e. if its third Stiefel-Withney class vanishes. In particular,
any spin manifold is spinc.

Let us make a short comment on Stiefel-Whitney classes. To any rank n real Riemannian vec-
tor bundle E → B classified by a map fE : B → BO(n), one can associate the k-th Stiefel-Whitney
class wk(E) := f ∗E(wk) ∈ Hk(B,ZZ2) where wk ∈ Hk(BO(n), ZZ2) are the canonical generators of the
ZZ2-polynomial ring H∗(BO(n), ZZ2). The first Stiefel-Whitney class measures an obstruction to the
orientability of a Riemannian bundle, and the second Stiefel-Whitney class measures the obstruction
to the existence of a spin structure on an orientable Riemannian bundle.

Back again to the algebraic setting, let us set C`(n) := C`(n)⊗ C. Then Spin(n) ⊂ C`(n) ⊂ C`(n)
so that any complex representation of the complexified Clifford algebra C`(n) on some vector space
S reduces to a complex representation of Spin(n). There are essentially two types of representations
according to the parity of the manifold which we briefly describe in the following proposition, refer-
ring the reader to any classical text on spin structures for a proof.

Proposition: When n is odd all irreducible complex representations C`(n) → HomC(S, S) re-
strict to a unique irreducible representation of Spin(n). When n is even, a complex representation
C`(n) → HomC(S, S) yields a representation ∆n of Spin(n) which decomposes into a direct sum
of two inequivalent irreducible complex representations ∆+

n and ∆−n on S+ and S− respectively.
Such representations are called spinor representations and the corresponding representation spaces
S, S+,S− are called spinor spaces.

These spinor spaces give rise to spinor bundles:

S(E) := Pspin(E)×Spin(n)
S,

S
+
−(E) := Pspin(E)×Spin(n)

S
+
− ,

where E → B is some vector bundle with a spin structure. In fact, any Clifford moduleM based on
a odd (resp. even) dimensional spin manifold B, i.e. any (resp. ZZ2-graded) vector bundle M with
an (graded) action of the bundle C`(B) of Clifford algebras on it

C∞(C`(B))× C∞(M) → C∞(M)

(a, s) 7→ c(a) · s

is of the form:
M := S(TB)⊗W,

(resp. M
+
− := S

+
−(TB)⊗W )

where W is an exterior vector bundle based on B.

Any complex representation ρ : Spin(V ) → GLC(W ) extends in an unique way to a representa-
tion ρ̃ : Spinc(V ) → GLC(W ). In particular the complex representations ∆n, ∆−n , ∆+

n uniquely
extend to ∆̃n, ∆̃−n , ∆̃+

n on S̃, S̃+, S̃−. The corresponding spinor spaces give rise to spinor bundles:

S̃(E) := P̃spinc(E)×Spinc(n)
S̃,
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S̃
+
−(E) := P̃spinc(E)×Spinc(n)

S̃
+
−

where E → B is some vector bundle with a spinc structure.

4 Fredholm operators and elliptic operators on closed man-

ifolds

4.1 Bounded linear operators

Useful references are [5], [9], [36], [28], [46], [44], [47], [53].

Let E be a complex Banach space with norm ‖ · ‖E.

Definition: Let F be another Banach space with norm ‖·‖F . The space of bounded linear operators
from E to F

B(E,F ) := {A : E → F, ∃C > 0, ‖Au‖F ≤ C‖u‖E ∀u ∈ E}

is equipped with the norm ‖|A‖| ≡ supu∈E,x 6=0
‖Au‖F
‖u‖E

is a Banach space. When F = E we set

B(E) := B(E,E) which is an example of Banach algebra, a notion we briefly recall. But let us first
give a useful example of bounded operator.

Example: Let L : l2 → l2 be the left translation operator on the set l2 of L2 convergent sequences
defined by

L((un)) := (vn), vn = un+1.

An algebra A is a vector space equipped with a bilinear map:

A×A → A
(a, b) → ab

such that a(bc) = (ab)c. It is a normed algebra whenever it can be equipped with a submultiplicative
norm:

‖ab‖ ≤ ‖a‖ · ‖b‖.

It is a unital algebra whenever it admits a unit 1, i.e. 1a = a1 = a ∀a ∈ A.
A Banach algebra is a complete normed algebra.

A C∗-algebra is a Banach algebra A equipped with an involution ∗ : A → A (i.e. ∗ is a linear
map satisfying ∗2 = I) such that ‖a∗a‖ = ‖a‖2 for any a ∈ A. As a consequence, the involution is
isometric, i.e. ‖a∗‖ = ‖a‖ ∀a ∈ A.
Example: Given a locally compact Hausdorff space X, the space C0(X) of complex valued contin-
uous functions on X vanishing at infinity, equipped with the involution ? : f 7→ f is a commutative
C∗-algebra.
Definition: The spectrum (or dual ) of a C∗-algebra A denoted by Â is the set of unitary equiva-
lence classes of non trivial irreducible ?-representations of A.
Remark: When A is commutative, Â coincides with the dual of the algebra A i.e. with the set of
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non zero characters on A. When moreover A is unital, i.e. when it has a unit, then its spectrum is
compact.

Gelfand’s theorem states that any commutative C∗-algebra A is of the form C0(X), for some lo-
cally compact space X which corresponds to the spectrum of the C∗-algebra, i.e. A = C0(Â). In
other words, there is a map

g : A → C0(Â)

x 7→ g(x) := x̂

called the Gelfand map, which gives rise to an isometric isomorphism.

There is another characterisation of bounded operators on Hilbert spaces using the Hermitian prod-
ucts. Letting H1, H2 be two Hilbert spaces equipped with the Hermitian products 〈·, ·〉1, 〈·, ·〉2, an
operator A lies in B(H1, H2) provided there exists a constant C > 0 such that for any u ∈ H1, v ∈ H2

| < Au, v >2 | ≤ C‖u‖1‖v‖2. Indeed, if A ∈ B(H1, H2) this is the case, by the Cauchy-Schwarz
inequality. Conversely, if | < Au, v >2 | ≤ C‖u‖1‖v‖2, then ‖Au‖2

2 ≤ C‖u‖1‖Au‖2 so that
‖Au‖2 ≤ C‖u‖1 whenever Au 6= 0.

By the Riesz Lemma, the relation

〈Au, v〉2 := 〈u,A∗v〉1 ∀u ∈ H1, v ∈ H2

uniquely defines an operator A∗ ∈ B(H2, H1) called the adjoint of A.

Back to the example: In the above example, it is easy to check that LL∗ = Id but L∗L 6= Id.
Example: If H is a Hilbert space, the algebra B(H) equipped with the star operation L→ L∗ is a
C∗-algebra.
The Gelfand-Naimark theorem says that every abstract C∗-algebra with identity is isometrically ∗-
isomorphic to a C∗-algebra of operators. To prove that result, one uses the Gelfand-Naimark-Segal
or GNS construction which produces a representation from a state. To a state ρ on a C∗-algebra
A, i.e. a positive linear functional ρ : A → C (ρ(a∗a ≥ 0∀a ∈ A), one can associate a positive
semi-definite bilinear form 〈a, b〉 = ρ(b∗a) with kernel Nρ = {a ∈ A, ρ(a∗a) = 0} which is a linear
subspace of A and a left ideal in A. This bilinear form therefore induces a positive definite form 〈·, ·〉
on A/Nρ and hence a pre-Hilbert space structure on that quotient space, which by completion gives
rise to a Hilbert space Hρ. The left regular representation

πρ : A → B(Hρ)

b 7→ (a 7→ ba)

is cyclic with cyclic vector xρ := 1A +Nρ and ρ(a) = 〈πρ(a)xρ, xρ〉 for any a ∈ A.

4.2 Closed graph theorem

Useful references are [8], [47].

The operators one comes across in geometry or in physics usually are non bounded and only de-
fined on a dense domain of the Banach space.

Definition: Let E and F be two Banach space. The graph of an operator A : D(A) ⊂ E → F
defined on a domain D(A) is the set:

Gr(A) := {(u,Au) ∈ E × F, u ∈ D(A)}.
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It can be equipped with the (graph) norm

‖(u, v)‖ := ‖u‖E + ‖v‖F .
Notice that whenever A is invertible, then the graph of A−1 is the symmetric of the graph of A w.r.to
the diagonal axis.

Definition: The operator A is closed whenever its graph is closed for the graph norm.

When E and F are separable, there is another characterisation for closed operators.
An operator A : D(A) ⊂ E → F is closed if, given any sequence (un) converging to x ∈ E such that
Aun converges in F , then the limit u lies in the domain D(A) and Aun → Au.
We shall henceforth assume that the Banach spaces under consideration are separable.
It is easy to check that any bounded linear operator is closed.

Furthermore, a closed linear operator A : D(A) ⊂ E → F defined on a dense domain D(A) of
E extends in an unique way to a bounded operator on E whenever there is a constant C > 0 such
that ‖Au‖F ≤ C‖u‖E, ∀u ∈ D(A).

To prove this fact, all we need is to define the image of any element u ∈ E by an extension of
A. Since D(A) is dense in E, u can be seen as a limit u = limn→∞ un of a sequence (un) in D(A).
Since (un) is a Cauchy sequence, so is the sequence (Aun) a Cauchy sequence so that it converges to
some v ∈ F . The operator A being closed, this implies that u lies in the domain D(A) and Au = v.
This extended operator (also denoted by A) is clearly a bounded operator.
Moreover this extension does not depend on the choice of the sequence. For if (u′n) is another se-
quence tending to u, from the inequality ‖Aun − Au′n‖ ≤ C‖un − u′n‖, it follows that Au′n → Au.
As a consequence we have:

Closed graph Theorem: Let A : E → F be a closed linear operator with domain D(A) = E.
Then A ∈ B(E,F ), i.e. A is bounded on E.

In the following, we assume the operators are closed and defined on a dense domain D(A).

Proposition: The inverse of a bijective linear operator A : D(A) ⊂ E → F is a bounded op-
erator A−1 : F → E.
Proof: Since the graph of A is closed so is the graph of A−1 and the result follows from the closed
graph theorem.

Definition: The resolvent of A is the set

ρ(A) := {λ ∈ C,A− λI is bijective }
= {λ ∈ C,A− λI is bijective and (A− λI)−1 ∈ B(H)}.

The spectrum σ(A) of A is the complement of the resolvent:

σ(A) := C/ρ(A).

The point spectrum σp(A) is the set

σp(A) := {λ ∈ C,Ker(A− λI) 6= {0}}.

In finite dimensions, σp(A) = σ(A), which is not generally the case in infinite dimensions.
Example: Let H = l2 be the space of l2 convergent sequences and let L : l2 → l2 be the operator
sending a sequence (un) to a sequence (vn) with v0 = 0, vi = ui−1. 0 does not belong to σp(A) but 0
lies in σ(A).

46



4.3 Adjoint of an operator

Useful references are [8], [44].

Let H1 and H2 be Hilbert spaces equipped with the Hermitian products 〈·, ·〉1 and 〈·, ·〉2 respec-
tively. We extend here the notion of adjoint of an operator to unbounded operators. A preliminary
step is the notion of symmetric of an operator.
Definition: The operator A∗ : D(A∗) ⊂ H2 → H1 is symmetric to an operator A : D(A) ⊂ H1 → H2

if
〈Au, v〉2 = 〈u,A∗v〉 − 1 ∀u ∈ D(A), ∀v ∈ D(A∗).

An operator A is symmetric if

〈Au, v〉2 = 〈u,Av〉 − 1 ∀u ∈ D(A), ∀v ∈ D(A).

Notice that if A is symmetric, then D(A) ⊂ D(A∗) and A∗|D(A)
= A so that its graph is contained in

the graph of A∗. This is actually a characterisation:

A symmetric ⇐⇒ Gr(A) ⊂ Gr(A∗).

Definition: The adjoint of an operator A : D(A) ⊂ H1 → H2 defined on a dense domain D(A) is
an operator A∗ defined on

D(A∗) := {v ∈ H2,∃C(v) > 0, | < Au, v >2 | ≤ C(v)‖u‖1 ∀u ∈ D(A)}

by
< Au, v >2=< u,A∗v >1 ∀u ∈ D(A), v ∈ D(A∗).

This defines A∗ in an unique way in view of the density of the domain of A. For if v∗1 et v∗2 are
elements in H1 such that < Au, v >2=< u, v∗i >1, i = 1, 2 for any u ∈ D(A), then 0 =< u, v∗1 − v∗2 >1

for any u ∈ D(A) dense in E, which implies v∗1 = v∗2.

Proposition: The domain D(A∗) of the adjoint A∗ of a closed and densely defined operator
A : D(A) ⊂ H1 → H2 is dense in H1, and the adjoint is closed.
Proof: Let us assume that the domain of A∗ is not dense in H2. Then there exists a non zero vector
u ∈ H2 such that < u, v >2= 0 for any v ∈ D(A∗). Using the closedness of A, this would imply that

< u, v >2= 0 ⇔ < u, v >2 + < 0,−A∗v >1= 0

⇔ (0, u) ∈ (Gr′(−A∗))⊥ = Gr(A)

and hence A(0) = u 6= 0 which contradicts the linearity of A.
Let us check that A∗ is closed. Let (vn, A

∗vn) be a Cauchy sequence in D(A∗) × H1 converging to
(y, x) ∈ H2 ×H1. For any u ∈ D(A), we have

< Au, y >2= lim
n→∞

< Au, vn >2= lim
n→∞

< u,A∗vn >1=< u, x >1

so that | < Au, y >2 | ≤ ‖x‖1 · ‖u‖1 for any v ∈ D(A), which implies y ∈ D(A∗) and A∗y = u.

Whenever E = F = H is a Hilbert space equipped with the inner product 〈·, ·〉 := 〈·, ·〉E = 〈·, ·〉F ,
we say A is self-adjoint if A = A∗, i.e

< Au, v >=< u,Av > ∀u ∈ D(A) and D(A) = D(A∗).
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Since

< (u,Au), (−A∗v, v) >=< u,−A∗v > + < Au, v >= 0 ∀u ∈ D(A),∀v ∈ D(A∗),

the graph of A∗ relates to the graph of A by

(Gr′(−A∗))⊥ = Gr(A)

where “prime” means the symmetric set w.r. to the diagonal axis. Whenever A is closed this reduces
to (Gr′(−A∗))⊥ = Gr(A).
Notice that if A is self-adjoint, then its graph coincides with the graph of A∗. This is actually a
characterisation:

A self − adjoint ⇐⇒ Gr(A) = Gr(A∗).

Thus, a densely defined symmetric operator is self-adjoint whenever Gr(A∗) ⊂ Gr(A).

Notice that when E = F = H and A is self-adjoint then

(i)
σp(A) ⊂ IR.

Given λ ∈ σp(A) and u an associated eigenvector, then < Au, u >= λ < u, u >=< u,Au >=
λ̄ < u, u >. But since ‖u‖ 6= 0, it follows that λ̄ = λ and λ ∈ IR.

(ii) Given λi, i = 1, 2 ∈ σp(A), we have

λ1 6= λ2 ⇒ Ker(A− λ1I) ⊥ Ker(A− λ2I).

Indeed, if λ1 6= λ2 are two eigenvalues associated with the eigenvectors x1 and x2, then <
Ax1, x2 >= λ1 < x1, x2 >=< x1, Ax2 >= λ2 < x1, x2 >, from which it follows that <
x1, x2 >= 0.

Let A : D(A) ⊂ H → H. When the space Hp(A) spanned by the eigenvectors of A coincides with
the total Hilbert space H, letting {en, n ∈ IN} be an orthonormal basis of eigenvectors of H, the
operator reads:

Au =
∑
n

λn < u, en > ∀u ∈ H.

Given a continuous bounded map f : σp(A) ⊂ C → C, one can define the map f(A) using this
spectral representation of A on the domain:

D(f(A)) := {u ∈ H,
∑
n

f(λn)2 < u, en >
2<∞}

by

f(A)u =
∑
n

f(λn) < u, en > en foru ∈ D(f(A)).

Let A : D(A) ⊂ H1 → H2 be a closed operator defined on a dense domain D(A) of a Hilbert
space (H1, 〈·, ·〉1) with values in (H2, 〈·, ·〉2), then the domain D(A∗) is dense in H2 and we can define
the adjoint A∗∗ of A∗ which coincides with A.

Let us first check that A ⊂ A∗∗. Given x ∈ D(A), | < x,A∗y > | = | < Ax, y > | ≤ ‖Ax‖‖y‖
for any y ∈ D(A∗) and hence x ∈ D(A∗∗). Since < x,A∗y >=< Ax, y > the operators A and A∗∗
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coincide on D(A). Since A∗∗ is closed as the adjoint of a closed operator, so is its graph and we have
Gr((A∗)∗) = (Gr′(−A∗))⊥ = Gr(A), for Gr(A) is closed. This ends the proof of the identity A∗∗ = A.

Another useful property for a densely defined operator A : D(A) ⊂ H1 → H2 is that

(R(A))⊥ = Ker(A∗)

and hence
Ker(A∗)⊕R(A) = H2,

which applied to A∗ yields:
(R(A∗))⊥ = Ker(A)

and hence
Ker(A)⊕R(A∗) = H1.

Indeed, we have (R(A))⊥ ⊂ KerA∗. For if < y,Ax >= 0 ∀x ∈ D(A) then y ∈ D(A∗) and
< A∗y, x >= 0 ∀x ∈ D(A). But D(A) is dense in H so it follows that y ∈ KerA∗. Let us now
check the other inclusion. Given v ∈ KerA∗, we have < A∗v, u >= 0 for any u ∈ D(A) and hence
< v,A∗∗u >=< v,Au >= 0 for any u ∈ D(A) which shows that v ∈ R(A)⊥.

Proposition: Let A : D(A) ⊂ H be a densely defined symmetric operator. The following three
statements are equivalent

1. A is self-adjoint.

2. A is closed and Ker(A∗ + iI) = Ker(A∗ − iI) = {0}.

3. R(A+ iI) = R(A− iI) = H.

Proof:

• 1)⇒ 2). If A∗u = iu for some non zero vector u in D(A) = D(A∗), then

i〈u, u〉 = 〈iu, u〉 = 〈Au, u〉 = 〈u,Au〉 = 〈u, iu〉 = −i〈u, u〉

so that ‖u‖ = 0 and u = 0.

• 2) ⇒ 3). Since R(A+ iI) ⊕ Ker(A∗ + iI) = H, Ker(A∗ + iI) = 0 implies that R(A + iI) is
dense in H. To prove that the range actually coincides with H, we therefore need to check it
is closed. We first observe that

‖(A+ iI)u‖2 = 〈(A+ iI)u, (A+ iI)u〉
= 〈(A− iI)(A+ iI)u, u〉
= 〈(A2 + I)u, u〉
= ‖Au‖2 + ‖u‖2.

In particular,

‖(A+ iI)u‖2 ≥ ‖Au‖2 and ‖(A+ iI)u‖2 ≥ ‖u‖2 ∀u ∈ D(A).

Let (un) be a sequence in D(A) such that ((A + iI)un) converges to v ∈ H. The sequence
((A+ iI)un) being a Cauchy sequence, by the above inequalities so are (un) and (Aun) Cauchy
sequences which therefore converge respectively to some vectors u and v in H. The operator
A being closed by assumption, u lies in D(A) and v = Au so that the sequence ((A + iI)un)
converges to v + iu = (A + iI)u. This shows that the range of (A + iI) is closed; it therefore
coincides with H. Similarly, we show that R(A− iI) = H.
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• 3) ⇒ 1). Since A is symmetric, all we need to show is that D(A∗) ⊂ D(A). Let v ∈ D(A∗);
we want to show that v lies in D(A). Since R(A − iI) = H, there is a vector u ∈ D(A) such
that (A∗ − iI)v = (A − iI)u. On the other hand, D(A) ⊂ D(A∗) so v − u ∈ D(A∗) and the
operator A being symmetric we have A|D(A)

= A∗|D(A)
. Hence (A∗− iI)(v−u) = 0 and v−u lies

in Ker(A∗ − iI). On the other hand, combining the splitting R(A+ iI) ⊕ Ker(A∗ + iI) = H
with the assumption R(A + iI) = H shows that Ker(A∗ + iI) = H. Thus, v = u so v lies in
D(A) which implies D(A) = D(A∗).

4.4 Compact operators

Useful references are [9], [36].

Let E,F be two separable Banach spaces.

Definition: An operator A ∈ B(E,F ) is compact whenever the range A(BE(0, 1)) of the unit
ball BE(0, 1) of E has compact closure.
Equivalently, an operator A ∈ B(E,F ) is compact whenever given any bounded sequence (xn) in E,
one can extract from the sequence (Axn) a convergent sequence in F .

LetK(E,F ) denote the set of compact operators from E to F . When E = F we setK(E) := K(E,E).

K(E) is a two sided ideal in B(E). For if A ∈ K(E), B ∈ B(E) and a bounded sequence (un)
in E, (Bun) is also bounded. A being compact we can extract from (ABun) a convergent subse-
quence (ABuφ(n)) which shows that AB is compact. Similarly we show that the product BA is
compact. Indeed, A being compact, we can extract a subsequence (uφ(n)) of (un) such that (Auφ(n))
converges and B being bounded, (BAuφ(n)) therefore converges. This shows that BA is compact.

Let us check that K(E) is closed in B(E). Let An be a sequence of compact operators converg-
ing to A. To show the compactness of A(B(0, 1)) and hence of A, it is sufficient to show we can cover
the image ball A(B(0, 1)) by a finite number of balls with given radius. Let ε > 0 and n ∈ IN such
that ‖|An − A‖| < ε

2
. Since An is compact, we can cover An(B(0, 1)) by a finite number N of balls

with radius ε/2, An(B(0, 1)) ⊂
⋃N
i=1 B(hi, ε/2). This induces a covering of A(B(0, 1)) by a finite

number of balls of radius ε and ends the proof of the closedness of the set of compact operators.
Hence K(E) becomes a Banach algebra for the operator norm ‖ · ‖.

When E = H, K(H) is a ∗-ideal i.e. A ∈ K(H) ⇒ A∗ ∈ K(H). Indeed, let A be compact and
let us assume that A∗ is not compact. Then there is a sequence (un) in the unit ball B(0, 1) such
that ‖A∗un − A∗um‖ ≥ ε > 0 for any n,m ∈ IN . Let vn = A∗un, then

< Avn − Avm, un − um >= ‖A∗un − A∗um‖2 ≥ ε2

so that by the Cauchy-Schwartz inequality and using the fact that ‖un‖ ≤ 1, we get

ε2 ≤ ‖Avn − Avm‖‖un − um‖ ≤ 2‖Avn − Avm‖

in which case (Avn) would not have a convergent subsequence. This would contradict the compact-
ness of A.

Thus K(H) yields another example of C∗-algebra. Notice that unlike B(H) it does not contain

50



a unit element.

An example of a compact operator is provided by Sobolev inclusions on closed manifolds (see e.g.
[1], [17]). Given a closed manifold M and a vector bundle E based on M , using a partition of the
unity, one can define for any s ∈ IR, the Hs Sobolev closure Hs(E) of the space C∞(E) of smooth
sections of E (se e.g. [17]). For t < s, the inclusion i : Hs(E)→ H t(E) is a compact operator.

4.5 Finite rank operators

A useful reference is [9].

Since the compactness of the unit ball in a normed space implies that this space is finite dimen-
sional, a natural question is whether one can approximate compact operators by operators with
finite dimensional range. A bounded operator A ∈ B(E,F ) has finite rank if its range is finite di-
mensional. The dimension of the range is called the rank of the operator.
A simple example is given by finite rank projection operators. Let (ek) be a complete orthonormal
basis of a separable Hilbert space H, the projection operator Pk defined by Pkej ≡ ej if j ≤ k,
Pkej ≡ 0 otherwise, is a finite rank operator since its range has dimension k.

We now relate compact operators to finite rank ones.
Any finite rank operator is compact, since the closure of the range A(B(0, 1)) of the unit ball by
a finite rank operator A is compact as a closed and bounded subset of a finite dimensional space.
Hence, any limit (in the operator norm of bounded operators) of finite rank operators is compact
since the set of compact operators is closed in the set of bounded operators.

Conversely, when F is a Hilbert space, let us show that any compact operator can be obtained
as a limit (in the operator norm of bounded operators) of finite rank operators. Let A be a com-
pact operator; the closure A(B(0, 1)) of the range A(B(0, 1)) of the unit ball is compact. Given
ε > 0, it can therefore be covered by a finite number of balls B(hi,

ε
2
) centered at hi with given

radius ε in such a way that Ā(B(0, 1)) ⊂ ∪Ni=1B(hi,
ε
2
). Let F denote the subspace generated by

hi, i = 1, · · · , N and let PF denote the orthogonal projection (hence the need for a Hilbert structure
on the target space) onto F . Then Aε ≡ PFA has finite rank. Let us check that ‖|Aε − A‖| ≤ ε.
Since x ∈ B(0, 1) there is some i0 ∈ {1, · · · , N} such that ‖Ah − hi0‖ < ε

2
. Since ‖PF‖ ≤ 1, this

implies that ‖PFAh− PFhi0‖ < ε
2

and hence ‖PFAh− hi0‖ < ε
2
. It follows that ‖PFAh− Ah‖ < 2ε

for any h ∈ B(0, 1) and hence ‖|Aε − A‖| < ε, which shows that the compact operator A could be
approximated by finite rank ones Aε.

Here again, an example can be found on l2 sequences. To a sequence (αn) of real numbers con-
verging to 0, we can associate a compact operator

A : l2 → l2

(un) 7→ (αnun).

It is compact as limit of operators of finite rank Ak defined by

Ak((un)) = (α0u0, · · · , αkuk, 0, · · · , 0).

4.6 Fredholm operators

Useful references are [17], [31], [40], [44].
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Let E and F be two separable Banach spaces .
An operator A ∈ B(E,F ) is Fredholm whenever it is invertible “up to a compact operator”, i.e.
whenever there are operators B ∈ B(F,E) and C ∈ B(F,E) such that BA−I et AC−I are compact.

Example:

A : l2 → l2

(un) 7→ (
n√
n2 + 1

un)

is a Fredholm operator.

Any operator I − K with K ∈ K(E), is Fredholm. Note that if A ∈ B(E,F ) is a Fredholm op-
erator, then A + K is also Fredholm for any operator K ∈ K(E,F ). The set F(E,F ) of Fredholm
operators is open in B(E,F ).
If E and F are Hilbert spaces, since the adjoint of a compact operator is compact, the adjoint of a
Fredholm operator is Fredholm.

Proposition: Let H1 and H2 be two separable Hilbert spaces and let A ∈ B(H1, H2). The fol-
lowing conditions are equivalent:

i) A is Fredholm

ii) KerA and KerA∗ are finite dimensional and R(A) et R(A∗) are closed.

iii) The kernels KerA et KerA∗ are finite dimensional and

H1 = Ker(A)⊕ R(A∗),

H2 = Ker(A∗)⊕ R(A)

where the sums are orthogonal.

Proof:

(i) ⇒ (ii): We show that Ker(A) is finite dimensional. Let (un) be a sequence in the unit sphere of
Ker(A) so that ‖un‖ = 1. Then un = (I −BA)un and since I −BA is compact, we can extract
from (un) a convergent subsequence, which proves that the unit ball of Ker(A) is compact and
hence by the Bolzano-Weierstrass theorem (hence the need for separability) that KerA is finite
dimensional.

Let us now check that the range of A is closed. Let (un) be a sequence in D(A) and let
us assume that vn := Aun → v. Without any restriction, we can also assume that (un) lies in
KerA⊥.
Let us first assume that (un) is bounded. Since un = Bvn+(I−BA)un, I−BA being compact,
we can extract a convergent subsequence (uφ(n)) such that (I − BA)(uφ(n)) converges to some
w. B being compact and hence bounded, the sequence Bvn tends to Bv so that that uφ(n)

tends to some u := Bv + w. Thus v = limn vφ(n) = limnAuφ(n) = Au lies in the range of A so
that R(A) is closed.
If now the sequence (un) is non bounded, then ‖un‖ tends to +∞ when n → +∞. Applying
the result obtained in the bounded case to u′n ≡ un

‖un‖ yields a subsequence (u′φ(n)) ∈ KerA⊥ that

converges to u′ such that ‖u′‖ = 1 and Au′ = limn
Aun
‖un‖ = limn

vn
‖un‖ = 0. Since A is closed KerA

is also closed and u′ ∈ KerA which leads to a contradiction. Since the adjoint of a Fredholm
operator is Fredholm, KerA∗, resp. R(A∗) are finite dimensional, resp. closed.
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(ii) ⇒ (iii): Given a closed operator A and densely defined on H1, we know that

KerA∗ + R(A) = H2 (2)

and
KerA∗∗ + R(A∗) = H1 (3)

Since R(A) and R(A∗) are closed it follows that

KerA∗ + R(A) = H2

and
KerA+ R(A∗) = H1.

(iii) ⇒ (i): A is bijective from KerA⊥ = R(A∗) onto R(A) = Ker(A∗)⊥, so we can find two operators
C defined on R(A) and D defined on R(A∗) such that CA = I/KerA⊥ and AD = I/(KerA∗)⊥.
Let us denote by the same symbols C resp. the extension of C by 0 on KerA∗, resp. of D by
0 on KerA. They are bounded operators by the closed graph theorem and by construction we
have I − CA = πKerA and I − AD = πKerA∗ where πF is the orthogonal projection on the
vector space F . Since these two projections have finite rank, it follows that A is Fredholm.

We henceforth assume that the Hilbert spaces are separable.
Given a Fredholm operator A : H1 → H2, the index of A is the positive integer given by

ind(A) := dim Ker(A)− dim Ker(A∗)

= dim Ker(A)− codim R(A)

since the range of A and the kernel of A∗ are topological complements in H2.
It follows from the definition that ind(A∗) = −ind(A).

Further important properties of the index are

Proposition:

(i) Given two Fredholm operators A and B then their product AB is Fredholm and

ind(AB) = ind(A) + ind(B).

(ii) The index map ind : F(H1, H2)→ ZZ is continuous and locally constant on the set of Fredholm
operators.

Partial proof: Let us show the relation between the indices in (i), leaving the proof of the Fredholm
property of the product as an exercise. We write

Ker(AB) = Ker(B)⊕B−1 (R(B) ∩Ker(A)) |Ker(B)⊥

Ker(B∗A∗) = Ker(A∗)⊕ (A∗)−1 (R(A∗) ∩Ker(B∗))Ker(A∗)⊥

= Ker(A∗)⊕ (A∗)−1
(
Ker(A)⊥ ∩ R(B)⊥

)
Ker(A∗)⊥

.
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Hence

ind(AB) = dim Ker(AB)− dim Ker(B∗A∗)

= dim Ker(B) + dim (R(B) ∩Ker(A))

− dim Ker(A∗)− dim
(
Ker(A)⊥ ∩ R(B∗)

)
= dim Ker(B) + dim Ker(A)

− dim (Ker(B∗) ∩Ker(A))− dim Ker(A∗)

− dim
(
Ker(A)⊥ ∩Ker(B∗)

)
= dim Ker (A) + dim Ker(B)− dim Ker(A∗)− dim Ker(B∗)

= ind(A) + ind(B)

To show (ii), let T : H1 → H2 be a fixed Fredholm operator and let us consider the spaces H̃1 :=
Ker(T ∗)⊕H1 and H̃2 = Ker(T )⊕H2 together with the map

Hom(H1, H2) → Hom(H̃1, H̃2)

S 7→ S̃(u, h) := πTh⊕ (u+ S(h))

where πT denotes the orthogonal projection onto KerT . The map S → S̃ is continuous since
‖S̃− T̃‖ = ‖S−T‖. We check that S̃ ∈ Iso(Ẽ, F̃ ). Since T̃ is an isomorphism and since Iso(H̃1, H̃2)
is open in Hom(H̃1, H̃2), so is S̃ an isomorphism for some small perturbation S of T . Hence S
is Fredholm and since ind(S̃) = 0 we have ind(S) = ind(T ) which shows that the index is locally
constant.

Let us illustrate the notion of index by the example quoted at teh beginning of this chapter. Let
A : l2 → l2 be the left translation operator on the set l2 of L2 convergent sequences defined by

A((un)) := (vn), vn = un+1.

A is onto and has one dimensional kernel. Its adjoint A∗ defined on l2 by

A∗((un)) := (vn), v0 = 0, vn = un−1 if n 6= 0

is one to one with range given by the closed set of sequences with vanishing first term. The operator
A is therefore Fredholm with index 1. It is easy to check that the index of An is n and the index of
(A∗)n is −n, which shows that the index is surjective onto ZZ.

4.7 Differential operators; Laplacians

Useful references are [6], [15], [20], [31], [45].

We need some notations:
For a multi index α := (α1, · · · , αn) ∈ INn, let us set |α| :=

∑n
k=1 αk and for ξ ∈ IRn, ξα := ξα1

1 · · · ξαnn .

We also set Dα
x := (−i)|α| ∂|α|

∂xα
with ∂|α|

∂xα
:= ∂|α|

∂x
α1
1 ···∂x

αn
n
.

With these notations we have F (Dαf) (ξ) = ξαf̂(ξ) for any Schwartz function f ∈ S(IRn) where F
also denoted by ˆ denotes the Fourier transform f̂(ξ) := (2π)−

n
2
∫
eix·ξf(x)dx.

In what follows, K := IR or K := C.

A differential operator of order m on an open subset U of IRn is a linear map

A : Ck(U,Kp)→ Ck−m(U,Kq)
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of the form

A =
∑
|α|≤m

aα(x)
∂|α|

∂xα
(4)

where aα(x) is a (q, p) matrix of smooth K-valued functions with aα 6= 0 for some α and such that
|α| = m (i.e. A differentiates m times).

The Laplacian ∆ := −
∑n

i=1
∂2

∂x2
i

on U := IRn provides an example of differential operator of or-

der 2.

A change of coordinates x̃ = x̃(x) on U gives for any j ∈ {1, · · · , n}:

∂

∂xj
=

n∑
k=1

∂x̃k
∂xj

∂

∂x̃k
.

As a consequence, in the new coordinates, the operator A reads

A =
∑
|α|≤m

ãα(x̃)
∂|α|

∂xα

for some other (q, p) matrix ãα of smooth K-valued functions on U , which shows that the operator
can be described in a similar way in these new coordinates. If we have aα(x) = 0 for all |α| = m,
then ãβ(x̃) = 0 for all |β| = m so that the order is conserved under a change of coordinates.

Given a smooth manifold M of dimension n, it therefore makes sense to define a differential op-
erator A : C∞(M, IR)→ C∞(M, IR) of order m as a linear operator which has the above description
(4) in any local chart of M since another local chart would give the same type of local description
via a change of coordinates.

Let GLr(K) be the group of invertible K-valued r × r matrices. Given two maps τ1 : U → GLp(K)
and τ2 : U → GLq(K), τ2Aτ1 defines another differential operator or order m on U since

τ2Aτ1 =
∑
|α|≤m

τ2aα(x)τ1
∂|α|

∂xα
,

is of the same type as (4). Letting πE : E → M and πF : F → M be two vector bundles based on
M of rank p, q respectively, this shows that the shape of the operator described in (4) is invariant
under a change of trivialization τE : U → GLp(K) on E and τF : U → GLq(K) on F .

It therefore makes sense to set the following

Definition: A differential operator of order m on a smooth manifold M is a linear map A : C∞(E)→
C∞(F ), where E,F are two vector bundles based on M of rank p, q over K respectively, such that
each point x of M has a neighborhood U with coordinates (x1, · · · , xn) over which there is a local
trivialization E|U ' U ×Kp and F|U ' U ×Kq in which the operator A reads

A =
∑
|α|≤m

aα(x)
∂|α|

∂xα
.

The Laplace Beltrami operator: Let (M, g) be a Riemannian manifold with Riemannian metric
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g. Here we take E = F = M × C. In a local chart, the metric reads g(x) = gij(x)dxidxj; let (gij)
denotes the inverse matrix of (gij) and detg the determinant of (gij). The Laplace-Beltrami operator
is defined by

∆g := − 1

detg

n∑
i,j=1

∂

∂xi

√
detggij

∂

∂xj

= −
n∑

i,j=1

gij
∂2

∂xi∂xj
+ terms of lower order.

Notice that setting gij = δij, the Kronecker symbol of {i, j} yields back the local expression of the
Laplacian on IRn.
A C2-function is harmonic if ∆gf = 0. Equivalently, it minimises the energy functional

E(f) =

∫
M

‖df‖2
x dvol(x)

where dvol(x) is the volume form associated to the Riemannian structure and ‖ · ‖x is the norm on
1-forms induced by the metric via the inner product on one forms. When M is compact, as we shall
see later in these notes, this is a finite dimensional space as the kernel of elliptic operator.

Laplacian on sections of a vector bundle: Let E → M be a vector bundle based on a Rie-
mannian manifold M and let E be equipped with a connection ∇E. The Levi-Civita connection
∇ on M yields a connection ∇T ∗M on T ∗M which, when combined with ∇E, yields a connec-
tion ∇T ∗M⊗E = ∇T ∗M ⊗ 1 + 1 ⊗ ∇E on T ∗M ⊗ E. Composed with ∇E, this yields an operator
∇T ∗M⊗E∇E : C∞(E) → C∞(T ∗M ⊗ T ∗M ⊗ E). Using the metric on C∞(TM ⊗ TM), by contrac-
tion, one can build its trace to obtain a second-order differential operator

∆E := −tr(∇T ∗M⊗E∇E)

called a Laplacian on C∞(E).

When E := M × K, and ∇E = ∇, the Levi-Civita connection on M , it yields back the Laplace-
Beltrami operator and we have:

∆g = −div ◦ ∇ = ∇∗∇

where div denotes the divergence defined by:

−〈divU, f〉 = 〈U,∇f〉 ∀f ∈ C∞(M), U ∈ C∞(TM)

and ∇∗ the adjoint (in the operator sense) of the connection ∇. Indeed, in local coordinates the di-
vergence reads divU = 1√

g
∂
∂xj

(U j√g), which combined with the local formula (∇f)j =
∑n

i,j=1 g
ij∂if

yields the first identity.

More generally, take E = ΛT ∗M equipped with the connection ∇E induced by the Levi-Civita
connection on M , then

∆ΛT ∗M = −tr(∇T ∗M⊗ΛT ∗M∇ΛT ∗M) = ∇∗∇

where we have set for short ∇ = ∇ΛT ∗M and ∇∗ its adjoint.
We shall come across another second order elliptic operator (d+ d∗)2 acting on forms with the same
leading symbol σ(x, ξ) = |ξ|2 as ∆ΛT ∗M , which relates to ∆ΛT ∗M by the Bochner-Weizenböck formula.
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4.8 Dirac operators

Following Dirac, we look for a differential operator DE whose square is a Laplacian ∆E. When E is
the trivial bundle E = IRn × C, ∆E is the ordinary Laplacian ∆ = −

∑n
i=1

∂2

∂2xi
on IRn. Looking for

an operator D =
∑n

i=1 ci
∂
∂xi

such that D2 = ∆ leads to the Clifford relations of Section 3.5, namely:

cicj + cjci = −2δij.

D =
∑n

i=1 ci
∂
∂xi

then yields a first order differential oprator which provides a square root of the

Laplacian. Extending this construction to search for a square root of a Laplacian ∆E acting on
sections of a vector bundle E, requires the use of a Clifford connection. We use here the notations
of section 3.5. Let M be a Riemannian manifold and let E →M be a Clifford module based on M .
A connection ∇E on E is called a Clifford connection if it commutes with the Clifford multiplication
on E:

[∇E, c(a)] = c(∇a) ∀a ∈ C∞(C(M)),

where C(M) is the bundle of Clifford algebras on M . Here ∇ is the Levi-Civita connection on M .

Examples:

• The exterior power of the cotangent bundle: Let E = ΛT ∗M be equipped with the
connection ∇E induced by the Levi-Civita connection on M . Then ∇E is a Clifford connection
for the Clifford action c(v) = ε(v)− i(v) ∀v ∈ C∞(TM) on ΛT ∗M seen as a Clifford module.

• Spinor bundles: Let E = S ⊗W where S is the spinor bundle on M . The Clifford module
acts on E via a Clifford multiplication c. Since Spin(V ) is a finite covering of SO(V ), we can
lift the Levi-Civita connection on SO(TM) to a connection on the spinor bundle S. Combined
with a connection ∇W on W , it yields a Clifford connection ∇S⊗W on S ⊗W .

• Spinc bundles: LetM be a Spinc-manifold, so that the orthonormal frame bundle SO(TM)→
M lifts to some Spinc(V )-bundle where V is the model space for M . Since Spinc(V )→ SO(V )
is not a finite covering, the Levi-Civita connection on M does not automatically lift to a con-
nection on Spinc(V ). We need additional information, namely a connection on the SO(V )×S1-
bundle obtained from the quotient of Spinc(V ) by +

−, which lifts to a connection on Spinc(V ).
This connection ∇̃ is obtained from combining the Levi-Civita connection on M with a con-
nection on the U(1) bundle obtained from Spinc(V ) by dividing out by Spin(V ).

From a Clifford connection ∇E one can build a first order differential operator

DE :=
n∑
i=1

c(ei)∇E
ei

called a Dirac operator.

Examples:

• A Dirac operator associated to the de Rham operator: In the first of the above ex-
amples, using the fact that the Levi-Civita connection ∇ relates to the exterior differential by
d = ε ◦ ∇ and to its adjoint by d∗ = −i ◦ ∇, we can write d + d∗ = c ◦ ∇ where c := ε − i
defines a Clifford multiplication on Ω(M). The operator d+ d∗ can therefore be interpreted as
a Dirac operator acting on sections of the Clifford module ΛT ∗M :

DT ∗M :=
n∑
i=1

c(ei)∇E
ei = d+ d∗.
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• The twisted Dirac operator: When M is a spin manifold, S the spinor bundle and W an
exterior vector bundle based on M with connection ∇W , the operator

DS⊗W :=
n∑
i=1

c(ei)∇S⊗W
ei

is called a twisted Dirac operator. In the absence of exterior bundle W , i.e. when E = S, it
is often denoted by D and simply called the Dirac operator on M . When the dimension of M
is odd, DS⊗W is an essentially self-adjoint Dirac operator (on the adequate domain), when the
dimension is even, E = E+ ⊕ E− = S+ ⊗W ⊕ S− ⊗W is ZZ2-graded and D is odd for this

grading, i.e. DS⊗W =

(
0

(
DS⊗W )−(

DS⊗W )+
0

)
.

• Dirac operators for Spinc-structures: To a connection ∇̃ on a Spinc-bundle, there is also
an associated Dirac operator :

D̃ =
n∑
i=1

c(ei)∇̃ei .

In general, the square of a Dirac operator DE only coincides with the Laplacian ∆E only up to a
zeroth order differential operator as we shall see from the Lichnerowicz and Bochner-Weitzenböck
formulae below.

• The square of DΛT ∗M yields the Hodge Laplacian

∆ = d∗d+ dd∗

acting on forms on a smooth manifold M . It relates to the Laplacian ∆ΛT ∗M by a Bochner-
Weizenböck relation:

Proposition

(d+ d∗)2 = ∆ΛT ∗M +
∑
i<j

c(dxi)c(dxj)Ω(ei, ej)

where Ω(u, v) := [∇u,∇v]−∇[u,v] is the curvature tensor on ΛT ∗M equipped with the connec-
tion induced by the Levi-Civita connection.

Proof: Since the operators involved in the equality to be proven are differential operators
and since the curvature operator is tensorial, the proof can be carried out choosing an or-
thornormal tangent frames (e1(x), · · · , en(x)) at a given point x and does not depend on the
way we extend it to a field of orthonormal frames in a neighborhood of x. We choose to extend
it to a field of orthonormal frames (e1, · · · , en) such that (∇ej)x = 0 at point x ∈M .

(d+ d∗)2α =
n∑

i,j=1

c(dxi)∇i(c(dxj)∇jα)

=
n∑

i,j=1

c(dxi)c(dxj)∇i(∇jα)

= −∇i

n∑
i=1

∇i∇jα +
n∑
i<j

c(dxi)c(dxj) (∇i∇j −∇j∇i)α

= ∆ΛT ∗Mα−
∑
i<j

c(dxi)c(dxj)Ω(ei, ej)α.
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• In order to relate the square of the twisted Dirac operator DS⊗W on a spin manifold with
∆S⊗W we need the notion of twisting curvature. Let us set E = S ⊗W equipped with the
connection ∇E as before. We first observe that the curvature ΩE of ∇E decomposes under the
isomorphism End(E) ' C(M)⊗ EndC(M)(E) as follows

(∇E)
2

= RE + FE/S

where RE is a C(M)- valued 2-form on M induced by the action on E of the Riemannian
curvature R of M given by the formula

RE(ei, ej) =
1

4

n∑
k,l=1

〈Ω(ei, ej)ek, el)c(e
k)c(el)〉

where ei, i = 1, · · · , n is an orthonormal frame of the tangent bundle TM and ei, i = 1, · · · , n
the dual frame and where Ω is the curvature of ∇ as in section 2.5. The remaining two form
FE/S is called the twisting curvature. When E = S⊗W , the twisted curvature FE/S coincides
with the curvature ΩW of ∇W .

The square of a Dirac operator DE differs from the Laplacian ∆E by a term involving the
scalar curvature of M and the twisting curvature of the Clifford connection ∇E as can be seen
from the Lichnerowicz formula:

Proposition:

(DE)
2

= ∆E + c(FE/S) +
s

4
where s is the scalar curvature of M and

c(FE/S) =
∑
i<j

FE/S(ei, ej)c(e
i)c(ej).

When E = S ⊗W , the Lichnerowicz formula reads:

(DW )
2

= ∆W +
∑
i<j

ΩW (ei, ej)c(e
i)c(ej) +

s

4

where ∆W is the Laplacian built from the connection ∇E = ∇⊗ 1 + 1⊗∇W .

The Lichnerowicz formula further reduces to:

D2 = ∆ +
s

4

for the ordinary Dirac operator D on M (with no exterior bundle).

4.9 Elliptic operators; generalised Laplacians

Letting x and x̃ = x̃(x) be two systems of coordinates on an open subset U of M , the Schwartz
property by which one can exchange partial differentiations yields for |α| = m:

∂|α|

∂xα
=
∑
|β|=m

[
∂x̃

∂x

]α
β

∂|β|

∂x̃β

where
[
∂x̃
∂x

]
is the symmetrization of the m-th tensor product of the matrix

(
∂x̃
∂x

)
. Hence for any

|α| = m, the matrices aα(x) transforms to:

ãα(x̃) =
∑
|β|=m

aβ(x)

[
∂x̃

∂x

]α
β

.
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Thus the expression
∑
|α|=m aα(x)∂

|α|

∂xα
extends to a section of ⊗msymTM ⊗Hom(E,F ) called the lead-

ing symbol of A and denoted by σL(A).

In the same way that we identify the symmetric tensor power ⊗msymV of a vector space V to the
set of homogeneous polynomials of degree m on the dual space V ∗, we can see the leading symbol
σL(A)(x) at point x of a differential operator A =

∑
α|≤m aα(x)∂

|α|

∂xα
as a homogeneous polynomial of

degree m in the variable ξ ∈ T ∗xX:

σL(A)(x)(ξ) = im
∑
|α|=m

aα(x)ξα,

where we have replaced ∂|α|

∂xα
by iαξα.

It is easy to check that
σL(AB) = σL(A)σL(B)

for two differential operators A and B and whenever the bundle E is Hermitian

σL(A∗) = σL(A)∗.

We call a differential operator of order m elliptic whenever its leading symbol σL(A)(x)(ξ) in
Hom(Ex, Fx) is invertible for any non zero ξ ∈ T ∗xM and any x ∈M .

From the above properties of the leading symbol, it follows that if A is elliptic then so is A∗, and
hence so is A∗A.
In fact the injectivity of the leading symbol of A is enough to have the ellipticity of A∗A since
σL(A)(x)(ξ) implies that σL(A∗)(x)(ξ) = (σL(A)(x)(ξ))∗ is onto and hence that σL(A∗A) is bijective
as a product of (σL(A)(x)(ξ))∗ and σL(A)(x)(ξ).

Generalised Laplacians: The Laplace-Beltrami operator has leading symbol given by:

σL(∆g)(x)(ξ) =
n∑

i,j=1

gij(x)ξiξj = ‖ξ‖2

where the norm is defined by the scalar product on the cotangent space induced by the metric on
M . More generally, we call generalised Laplacian on a vector bundle E a second order differential
operator H such that σL(H)(x)(ξ) = ‖ξ‖2. The Laplacian acting on sections of E described above
is a generalised Laplacian.

A generalised Laplacian H is elliptic since σL(H)(x)(ξ) = ‖ξ‖2 is invertible whenever ξ 6= 0.

The leading symbol of a Dirac operator is given by σL(D)(x)(ξ) = ic(ξ). One can easily check
that its square yields back the leading symbol of the Laplacian since c(ξ)2 = ‖ξ‖2; it is therefore a
first order differential operator whose square is a generalised Laplacian.

The total symbol: The Fourier transform description of differential operators, called the
momentum space description, is often useful in physics. Given a point x ∈M and a local trivialization
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on a subset U containing x, we identify T ∗xM with IRn, x with a point in IRn, and write a local section
u of the trivialised bundle E over U :

u(x) =
1

(2π)
n
2

∫
IRn

ei〈x,ξ〉xû(ξ)dξ

where 〈x, ξ〉x is the inner product on IRn induced by the Riemannian metric on X. Then a straight-
forward calculation yields:

(Au)(x) =
1

(2π)
n
2

∫
IRn

ei〈x,ξ〉xσ(A)(x, ξ)û(ξ)dξ

where
σ(A)(x)(ξ) :=

∑
|α|≤m

i|α|aα(x)ξα

is the total symbol of A. Unlike the leading symbol, the total symbol is only locally defined.

For a differential operator, the total symbol is polynomial in ξ; allowing non polynomial functions
with some growth conditions leads to pseudo-differential operators.

4.10 Pseudo-differential operators on manifolds

Useful references are [31], [49], [50].

In what follows we shall only briefly sketch the definitions and properties which can be of use to us
later on.

A pseudo-differential operator of order m on a closed Riemannian manifold M is a linear oper-
ator A : C∞(E)→ C∞(F ) where E,F are two vector bundles based on M of rank p, q respectively,
such that each point x of M has a neighborhood U with coordinates (x1, · · · , xn) over which there
are local trivializations E|U ' U × Cp and F|U ' U × Cq in which the operator A reads

Au(x) =
1

(2π)
n
2

∫
IRn

ei〈x,ξ〉xa(x, ξ)û(x)dξ,

where the p × q-matrix valued function a(x, ξ) (called the symbol of A) obeys the following growth
condition. For any multiindices α, β there is a constant Cα,β such that

|Dα
xD

β
ξ a(x, ξ)| ≤ Cα,β(1 + ‖ξ‖)m−|β| ∀(x, ξ) ∈ T ∗X.

Let Symm be the set of symbols satisfying this requirement.
One can check that this condition is satisfied whenever a is polynomial of degree m in ξ.
Also the inverse (1 + ∆g)

−1 is a pseudo-differential operator of order −2.

A useful notation is the following; The symbol a is said to have the formal development

a ∼
∞∑
j=1

aj, aj ∈ Symmj

if for each integer m there exists some integer K for which a −
∑K

j=1 aj ∈ Sym−m ∀k ≥ K. A
symbol a is classical whenever the amj ’s can be chosen positively homogeneous of degree mj in ξ, i.e.
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amj(x, tξ) = tmjamj(x, ξ) ∀t > 0.

A pseudo-differential operator A that has order smaller than any negative integer is called a smooth-
ing operator.

A typical example of smoothing operator is provided by the heat operator e−t∆g , t > 0 where ∆g is
the Laplace-Beltrami operator defined above. The exponential is defined as f(∆g) where f(x) = e−tx

using spectral representation of self-adjoint operators.

Letting as before Hs(E) denote the Hs Sobolev closure of the space C∞(E) of smooth sections
of E, we have the following fundamental result:

Proposition: Let E → M and F → M be two vector bundles based on a closed manifold
M . A pseudo-differential operator A : C∞(E)→ C∞(F ) of order m extends to a bounded operator

A : Hs(E)→ Hs−m(F ).

Idea of proof: Using a partition of unity on the base manifold M , one can reduce the proof to the
case of an operator acting on functions with compact support in IRn where n is the dimension of M ;
we follow the steps of Proposition 3.2. in chapter III of [31]. Given two smooth functions u, v with
compact support in IRn we can write

〈Au, v〉 =

∫
IRn

Âu(η)v̂(η)dη

=

∫
IRn

∫
IRn

[∫
IRn

ei〈ξ−η〉a(x, ξ)dx

]
û(ξ)v̂(η)dξdη.

Setting U(ξ) := û(ξ)(1 + |ξ|)s+m and V (η) = v̂(η)(1 + |η|)−s yields:

|〈Au, v〉| ≤
∫ ∫

Ψ(ξ, η)U(ξ)V (η)dξdη

≤
(∫ ∫

Ψ(ξ, η)U2(ξ)dξdη

) 1
2
(∫ ∫

Ψ(ξ, η)V 2(ξ)dξdη

) 1
2

≤ C‖u‖s+m‖v‖−s,

where we have set: Ψ(ξ, η) := |
∫
ei〈x,ξ−η〉a(x, ξ)dx|(1 + |ξ|)−s−m(1 + |η|)s which, according to the

growth assumptions is bounded from above by C(1 + |ξ − η|)−t+|s| for some positive constant C.

Corollary: Under the assumptions of the above proposition, the operator

A : Hs(E)→ Hs(F )

is compact whenever its order is negative. In particular, any smoothing operator is compact.

Proof: The first assertion follows from the compactness of the inclusion i : H t(F ) → Hs(F ) for
t > s. Indeed, setting t := s−m, we find that A : Hs(E)→ Hs−m(F ) composed with the inclusion i
is compact as the composition of a bounded and a compact operator, which yields the compactness
of A : Hs(E)→ Hs(F ). The rest of the proposition easily follows.

The notion of ellipticity extends to pseudo-differential operators. Namely, a pseudo-differential op-
erator of order m is elliptic if there exists a constant c > 0 such that, for all ξ with large enough
module |ξ| ≥ c, the inverse a(x, ξ) exists and satisfies

|a(x, ξ)−1| ≤ c(1 + ‖ξ‖)−m.
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Elliptic differential operators yield examples of elliptic pseudo-differential operators. We are now
ready to state an important result, referring the reader to e.g. [31] for a proof.

Proposition: Let E → M , F → M be two vector bundles based on a closed manifold M .
Any elliptic pseudo-differential operator A : C∞(E) → C∞(F ) admits a parametrix, i.e. an in-
verse map up to a smoothing operator. In other words, there is a pseudo-differential operator
B : C∞(M,F ) → C∞(M,E) such that AB − IF and BA − IE are smoothing operators where IE,
resp. IF is the identity map on C∞(E), resp. C∞(F ).

Corollary: Let E → M , F → M be two vector bundles based on a closed manifold M . An
elliptic pseudo-differential operator A : C∞(E)→ C∞(F ) of order a extends to a Fredholm map:

As : Hs(E)→ Hs−a(F ).

In particular,

• Ker A and KerA∗ are finite dimensional vector spaces. They are subspaces of C∞(E) and
C∞(F ) respectively.

• Decomposition theorem
Hs(E) = Ker(A)⊕ R(A∗) ∀s ∈ IR,

Hs(F ) = Ker(A∗)⊕ R(A) ∀s ∈ IR,

where the sums are orthogonal w.r.to the Hs-inner product,

C∞(E) = Ker(A)⊕ R(A∗),

C∞(F ) = Ker(A∗)⊕ R(A)

where the sums are orthogonal w.r.to the L2-inner product.

Idea of the proof: It is based on the results of section 3.6.

• The fact that A induces a Fredholm operator follows from its invertibility “up to a smoothing
operator” using one of the characterizations of Fredholm operators, as bounded operators which
are invertible, “up to a compact operator”.

• The fact that Ker (A) and Ker(A∗) are finite dimensional vector spaces and the Sobolev de-
composition theorems follow directly from the properties of Fredholm operators (see section
3.6).

• Since Ker(A) =
⋂
s KerAs and and Ker(A∗) =

⋂
s Ker (A∗)s, these kernels are subspaces of

C∞(E) and C∞(F ).

• The decompositions of the spaces of smooth sections then follow from the Fredhom property
of the various extensions of A to Sobolev spaces.

4.11 The Hodge de Rham descomposition theorem

From the Bochner-Weitzenböck formula, we know that the Hodge Laplacian ∆ = (d+ d∗)2 differs
from the Laplacian ∆ΛT ∗M by a zeroth-order differential operator. They therefore have the same
leading symbol; since we know that ∆ΛT ∗M is elliptic, so is ∆. As a consequence of the above
corollary applied to the restriction ∆p of ∆ to p-forms, the space of p-harmonic forms given by:

Hp(M) := {α ∈ Ωp(M),∆pα = 0}

63



is finite dimensional. Its dimension is called the p-th Betti number and denoted by βp(M) so that

βp(M) = dim(Hp(M)).

On the other hand, the decomposition theorem for Fredholm operators yields a Hodge decomposition
theorem:

Ωp(M) = Hp(M)⊕R(d+ d∗)|Ωp(M)
= Hp(M)⊕R(dp−1)⊕R(d∗p+1),

the direct sums corresponding to orthogonal sums w.r.to the inner product on forms. As a conse-
quence, we have:

βp(M) = dim (Hp(M)) .

The Hodge star isomorphism between p-forms and n− p-forms yields the isomorphism:

Hp(M) ' Hn−p(M)

and hence
βp(M) = βn−p(M).

The Euler characteristic which is given by the alternating sum of the Betti numbers defines a
topological invariant of the manifold:

ξ(M) =
n∑
p=0

βp(M).

There is another possible interpretation of the Euler characteristic as the index of the zero section
in the tangent bundle TM . Let f : M → N be a smooth map from a closed oriented smooth m-
dimensional manifold M to another closed oriented smooth n-submanifold N of an oriented manifold
W of dimension m+ n such that f is transverse to N . A point x ∈ f−1(N) has positive or negative
type according to whether the composition:

Mx → Wf(x) → Wf(x)/Nf(x)

preserves or reverses orientation. Here the first map is the tangent map Txf to f at point x.
Accordingly we set ix(f,N) = 1 or ix(f,N) = −1. The intersection number of (f,N) is the integer:

i(f,N) :=
∑

x∈f−1(N)

ix(f,N).

It is invariant under homotopies of the map f .

Now if s0 : M → TM is the zero section of the tangent bundle of M , we have:

ξ(M) = i(s0,M).

As a consequence, since any section s of the tangent bundle is homotopic to the zero section by the
map (t, x) 7→ ts(x), if the tangent bundle to M has a section which is nowhere zero then ξ(M) = 0.
Since ξ(S2n) = 2, every vector field on S2n vanishes somewhere. In other words, a ”hairy ball cannot
be combed”.

We shall also need so split the space of harmonic forms as the sum

Hp(M) = Hp,sd(M)⊕Hp,asd(M)
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of the space of self-dual harmonic p-forms

Hp,sd(M) := {α ∈ Hp(M), ?α = α}

and of the space of anti self-dual harmonic p-forms

Hp,asd(M) := {α ∈ Hp(M), ?α = −α}

which are both trivially finite dimensional since the space of harmonic p-forms is. We set

β+
p (M) := dim

(
Hp,sd(M)

)
, β−p (M) := dim

(
Hp,asd(M)

)
.

Clearly we have:
βp(M) = β+

p (M) + β−p (M).

4.12 An incursion into index theory

It follows from the above proposition that an elliptic pseudo-differential operator A : C∞(E) →
C∞(F ) is Fredholm since it is invertible up to a compact operator, namely here a smoothing operator.
It therefore has a well-defined index:

ind(A) := dim (Ker(A))− dim (Ker(A∗))

which is computed by so-called index theorems which express the index in terms of some chomology
forms thus relating it to topological characteristic classes. Just to give a flavour, we state here
(without proof) a few examples of index theorems.

• We saw that the operator D = d + d∗ gives rise to a Dirac operator D acting on forms on a
closed manifold M . Let us equip Ω(M) with the ZZ2-grading given by the parity of the form

Ω(M) = Ωev(M)⊕ Ωodd(M)

where Ωev(M) = Ker(I − P ) is the algebra of forms of even degree and Ωodd = Ker(I + P ) the
space of forms of odd degree. Here P denotes the parity operator which is 1 on even forms and
−1 on odd forms. The index of the Dirac operator

D+
P := (d+ d∗)|Ker(I−P )

can be expressed in terms of the Euler characteristic:

Lemma:
ind(D+

P ) = χ(M).

Proof.

ind(D+
P ) = dimKer(D+

P )− dimKer(D−P )

= dimKer((1− P )D)− dimKer((1 + P )D)

=
∑
p

dimKer(D|Ω2p(M)
)−

∑
p

dimKer(D|Ω2p+1(M)
)

=
n∑
p=0

(−1)pdimKer(D|Ωp(M)
)

=
n∑
p=0

(−1)pdimHp(M)

=
n∑
p=0

(−1)pβp(M)

= χ(M).
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An index theorem (which we do not prove here) gives a local expression of the index:

Theorem

ind(D+
P ) = χ(M) =

1

(2π)−
n
2

∫
M

e(∇)

where ∇ is the Levi-Civita connection on M , e(∇) the Euler class of M equipped with ∇.

• Let us now introduce another ZZ2-grading on Ω(M) using the chirality operator defined on p
forms by:

Γ = (−1)pn+
p(p−1)

2
+lik(n)?

where k(n) = n
2

if n is even and k(n) = n+1
2

if n is odd. ? is the Hodge star. Since Γ2 = I , the
space of forms splits:

Ω(M) = Ω+(M)⊕ Ω−(M)

where we have set Ω+(M) = Ker(Γ− I) and Ω−(M) := Ker(Γ + I). If the dimension n is even,
then D = d+ d∗ anti commutes with Γ, i.e. ΓD = −DΓ, so that the operator

D+
Γ := (d+ d∗)|Ker(I−Γ)

acts from the space Ω+(M) to the space Ω−(M).

We henceforth specialise to the case n = 2k = 4l is a multiplie of 4, for which Γ coincides
with the Hodge star operator on k forms. In particular we have:

Hk,sd(M) = {α ∈ Ωk(M),Γα = α}

and
Hk,asd(M) = {α ∈ Ωk(M),Γα = −α}

that are finite dimensional spaces with dimensions β+
k (M) and β−k (M) respectively.

Proposition: In dimension n = 2k = 4l, the bilinear form

σ : Ωk(M)× Ωk(M) → IR

(α, β) → σ(α, β) :=

∫
M

α ∧ β

induces a non degenerate symmetric bilinear form on Hk(M). Its signature, called the signature
of M , is given by

σ(M) := sign(σ) = β+
k (M)− β−k (M).

Proof. We saw previously that
∫
M
α ∧ β = (−1)k

∫
M
β ∧ α on k-forms so that if k is even,

it yields a symmetric bilinear form. Given two closed forms α and β, σ(α, β) only depends on
the cohomology class of α and β; indeed∫

M

(α + dγ) ∧ β =

∫
M

α ∧ β +

∫
M

dγ ∧ β

=

∫
M

α ∧ β +

∫
M

d(γ ∧ β)−
∫
M

γ ∧ dβ

=

∫
M

α ∧ β
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where we have used Stoke’s theorem to set the middle integral to zero and the fact that β is
closed to set the last integral to zero.

The form σ is non degenerate; indeed, let us assume that
∫
M
α∧β = 0 for any closed k-form β

and let us show that α = 0. Pick a harmonic k-form α as representative of a cohomology class
in Hk(M). Then

(d+ d∗)α = 0⇒ dα = d∗α = 0⇒ d(?α) = 0.

Hence ?α is also a closed k-form and we can take β = ?α. This yields α ∧ ?α = ‖α‖2 = 0 so
that α = 0 which ends the proof of the non degeneracy.

Let us now compute this bilinear form in different cases. First observe that for α ∈ Hk,sd(M),
β ∈ Hk,sd(M),

σ(α, β) =

∫
M

α ∧ β =

∫
M

α ∧ ?β = 〈α, β〉,

if α ∈ Hk,asd(M), β ∈ Hk,asd(M)

σ(α, β) =

∫
M

α ∧ β =

∫
M

α ∧ ?β = −〈α, β〉

and if α ∈ Hk,sd(M), β ∈ Hk,asd(M)

σ(α, β) =

∫
M

?α ∧ β = (−1)k
∫
M

β ∧ ?α = 〈α, β〉 =

∫
M

?α ∧ ?β = −σ(α, β) = 0.

As a consequence, σ is diagonal on Hk,sd(M)⊕Hk,asd(M) with eigenvalues +1,−1 with multi-
plicity β+

k (M) and β−k (M). The bilinear form σ therefore has signature

sign(σ) = dimHk,sd(M)− dimHk,asd(M) = β+
k (M)− β−k (M).

The following Lemma relates the index of D+
Γ to the signature of the manifold:

Lemma:
ind(D+

Γ ) = σ(M)

Proof. We first observe that if αi, i = 1, · · · , βj(M) is an orthonormal basis ofHj(M) with j < k
then α+

i = αi + ?αi, α
−
i = αi− ?αi, i = 1, · · · , βj(M) yield an orthonormal basis of Hj ⊕Hn−j,

where ? is the Hodge star operator. Since the α+
i are self-dual and the α−i are anti self-dual, they

yield an orthonormal basis respectively of Hj,sd(M)⊕Hn−j,sd(M) and Hj,asd(M)⊕Hn−j,asd(M).
As a consequence,

β+
j (M) + β+

n−j(M) = dim
(
Hj,sd(M)⊕Hn−j,sd(M)

)
= dim

(
Hj,asd(M)⊕Hn−j,asd(M)

)
= β−j (M) + β−n−j(M).

Hence we have,

ind(D+
Γ ) = dimKer(D+

Γ )− dimKer(D−Γ )

= dimKer(D|
Ωsd(M)

)− dimKer(D|
Ωasd(M)

)

=
n∑
j=0

dim
(
KerHj,sd(M)

)
−

n∑
j=0

dim
(
KerHj,asd(M)

)
=

n∑
j=0

β+
j (M)−

n∑
j=0

β−j (M)
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=
k−1∑
j=0

(
β+
j (M) + β+

n−j(M)
)
−

k−1∑
j=0

(
β−j (M) + β−n−j(M)

)
+ β+

k (M)− b−k (M)

= β+
k (M)− b−k (M)

= σ(M).

An index theorem (which we do not prove here) gives a local expression of the index as an
integral of the L̂ genus:

Theorem Let M be an oriented Riemannian closed n = 4l dimensional manifold.

ind(D+
Γ ) =

(−1)l

π2l

∫
M

L(∇)

where as before, ∇ is the Levi-Civita connection.

• Let M be an even dimensional spin manifold and let E = S ⊗W be the tensor product of
the spinor bundle S of M and some exterior bundle W . Since S = S+ ⊕ S− is ZZ2-graded,
so is E = E+ ⊕ E−. Let D+ : C∞(E+) → C∞(E−) be the corresponding Dirac operator.
The Atiyah-Singer index theorem (see e.g. [6], [31]) expresses this index of D+ as the integral
over the base manifold of some Chern-Weil forms, namely the Â-genus on M and the Chern
character on W described at the end of chapter 2:

ind(D+) =
1

(2iπ)
n
2

∫
M

Â(∇)ch(∇W ).

5 Configuration and moduli spaces

This chapter offers an illustration of how the various tools from geometry and operator theory
presented in the previous chapters can come into play in quantum field theory. A short description
of spaces of (inequivalent) configurations arising in Yang-Mills, Seiberg-Witten and string theory is
given here.

5.1 The geometric setting

A classical field theory with symmetries typically leads to the following geometric setting. A gauge
group G (a group of symmetries) acts on an (infinite dimensional) space of configurations X, and
one is interested in the moduli space of inequivalent configurations M := X/G.

The space of inequivalent configurations can play a role to study solutions of the classical field equa-
tions –namely the Euler-Lagrange equations minimizing the classical action– (Yang-Mills equation
in Yang-Mills theory and the Seiberg -Witten equations in Seiberg-Witten theory) or to investigate
the quantized theory from a path integration point of view (in string theory). In both cases the non-
compactness of the moduli space can come into the way; Seiberg-Witten theory offers the advantage
over Yang-Mills theory that the moduli space of classical solutions is compact and Seiberg-Witten
invariants are built up from integrals on the moduli space of inequivalent solutions to the Seiberg-
Witten equations. In the path integral approach to quantization, when the moduli space is a finite
dimensional manifold (for string theory, the Teichmüller space of inequivalent conformal structures
on a Riemann surfaces is a smooth finite dimensional manifold), one can reduce path integrals on
infinite dimensional configuration spaces to ordinary integrals on the moduli space.

If the action is not free, the moduli space might not be a Hausdorff space; to cure this problem,
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one can either reduce the group of gauge transformations or reduce the configuration space in order
to get a free action and a manifold structure on the quotient space. For this reason, in Yang-Mills
and Seiberg-Witten theory one restricts to irreducible configurations, whereas in string theory, one
restricts the gauge group, considering only the connected component of the identity of the group of
diffeomorphisms of a surface.

Recall from the (slice) theorem of section 3.2, that given a Hilbert Lie group G, acting L2-isometrically
on a smooth Hilbert manifold X via a smooth, free and proper action, provided the tangent map
τx := Deθx (see notations of section 3.2) has a closed range, then the quotient space X/G is a smooth
Hilbert manifold. In practice, one typically comes across the following situation:

- G is modelled on some space Hs+k(E) of Sobolev sections of some vector bundle E based on
a closed manifold M of dimension n (k > 0, s is usually chosen large enough s > n

2
so that

Sobolev sections are continuous),

- X is modelled on some space Hs(F ) of Sobolev sections of another vector bundle F based on
M ,

- for x ∈ X, τx : C∞(E)→ C∞(F ) is a differential operator of order k > 0 with injective symbol.

The last proposition in section 4.8 then tells us that if τx were elliptic, it would extend to a Fredholm
operator τx : Hs+k(E)→ Hs(F ) and hence have a closed range (see section 3).

The fact that τx be elliptic requires that its leading symbol be an isomorphism for non vanish-
ing ξ, but this in turn implies that E and F should have the same rank, which is not always the
case in practice. However, under the weaker requirement that the leading symbol be injective for
non vanishing ξ (which we recall implies that τ ∗xτx is elliptic), the closedness of the range of τx and
as a consequence, the L2- orthogonal splitting:

R(τx)⊕Ker(τ ∗x) = C∞(F )

still hold. In fact this splitting holds in the Hs topology and we have:

Theorem: Let G be a Hilbert Lie group modelled on some space Hs+k(E) of Sobolev sections
of some Hermitian vector bundle E based on a closed manifold M of dimension n (with s > n

2
,

k > 0) acting on a Hilbert manifold X modelled on some space Hs(F ) of Sobolev sections of another
Hermitian vector bundle F based on M . We assume that the action is L2-isometric for the L2 Rie-
mannian metric on X built from inner products on the model space obtained by integrating along
M the inner products on the fibres. If the action is free, proper and smooth and if moreover, for any
x ∈ X, τx : C∞(E) → C∞(F ) is a differential operator of order k > 0 with injective symbol, then
the moduli space X/G is a smooth manifold.

In applications, an additional difficulty occurs; because one restricts oneself to some Sobolev set-
ting, the differential operator τx may have non smooth coefficients lying in some Sobolev space
so that one then needs to adapt the classical results on differential operators with smooth coeffi-
cients (notice that a differential operator of order a with Hk-coefficients takes smooth sections to
Hk−a sections unlike an operator with smooth coefficients which takes smooth sections to smooth
sections). We shall elude this difficulty here, referring the reader to [29] for a discussion on this point.

5.2 The I.L.H. setting

In practice, one comes across Fréchet spaces of smooth sections rather than spaces of Hs-sections,
namely intersections C∞(E) =

⋂
s>0H

s(E) rather than a space Hs(E) for some fixed s, π : E →M
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being a vector bundle based non a closed manifold M . Omori [41] introduced the notion of I.L.H.
space -the inverse limit of Hilbert spaces- by which C∞(E) is seen as the inverse limit of the Hilbert
spaces Hs(E) (see [41]).

Recall that if {Xn, n ∈ IN} is a countable family of topological spaces with continuous inclusions
Xn−1 ⊂ Xn then the intersection X :=

⋂
nXn can be given the projective topology which corre-

sponds to the weakest topology on X that makes the inclusions X → Xn continuous. We denote the
resulting topological space, called the inverse limit of the Xn by (X;Xn, n ∈ IN).
If for every n ∈ IN , the space Xn is a linear Hilbert space and the inclusion maps are linear, the
resulting inverse limit (X;Xn, n ∈ IN) is a linear space called an inverse limit of Hilbert spaces or
an I.L.H. vector space for short.

A Ck- I.L.H. manifold modelled on an I.L.H. linear space (E;En, n ∈ IN) is an I.L.H. topologi-
cal space (X;Xn, n ∈ IN) such that

- Xn is a Ck-Hilbert manifold modelled on En,

- For each x ∈ X, for any n ∈ IN , there is an open neighborhood Un(x) of x in Xn and
homeomorphisms:

Φn : Un(x)→ Vn ⊂ En

which yield Ck coordinate systems around x ∈ Xn and satisfy:

Un+1(x) ⊂ Un(x) and Φn|Un+1(x)
= Φn+1,

- U(x) :=
⋂
n Un(x) is an open neighborhood of x in (X;Xn, n ∈ IN).

We have included the last condition in the definition of an I.L.H. manifold which makes it a strong
I.L.H. manifold according to the usual convention, so that I.L.H. manifolds considered here are in
fact strong I.L.H. manifolds.

A map φ : X → Y between two Ck-I.L.H. manifolds is Ck-I.L.H. differentiable if it is the inductive
limit of Ck-differentiable maps φn : Xm(n) → Yn for some m(n) such that φn|Xm(n+1)

= φm(n+1). It is

smooth if it is Ck for all k ∈ IN .

There are examples for which one can choose m(n) = n (e.g. the multiplication in the Weyl group,
see below), but allowing m(n) 6= n is necessary if we want to put an I.L.H. Lie group structure on
the group of diffeomorphisms we need in the context of string theory.

An I.L.H. topological group is called an I.L.H. Lie group if it is a smooth I.L.H. manifold with
the group operations given by smooth I.L.H. maps.
The group of smooth diffeomorphisms on a closed manifold can be equipped with an I.L.H. Lie group
structure [41] even though the group of diffeomorphisms of a fixed Sobolev class is not a Hilbert Lie
group, hence the relevance of the concept of I.L.H. space.

Let P , B be smooth I.L.H. manifolds modelled on E and F respectively, π : P → B a smooth
I.L.H. map and G an I.L.H. Lie group. Then (P,B,G, π) is an I.L.H. principal bundle if and only if
the transition maps are smooth I.L.H. maps.

We are now ready to state the I.L.H. version of the above slice theorem. The notion of proper-
ness extends to the I.L.H. setting in a straight forward way.
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Theorem: Let G be an I.L.H. Lie group acting transitively on the right on a smooth I.L.H. manifold
X:

Θ : G ×X → X

(g, x) 7→ x · g.

Let us assume that the I.L.H. manifolds X, resp. G are modelled on the I.L.H. spaces C∞(E),
resp. C∞(F ) where E → M and F → M are two Hermitian vector bundles based on some closed
Riemannian manifold M . The manifold X is equipped with an L2 Riemannian structure built from
inner products on their model spaces obtained by integrating along M the inner product on the
fibres.
Under the following assumptions:

- The action of G on X is smooth I.L.H., L2-isometric, free and proper,

- Setting θx := Θ(·, x) for any x ∈ X, the map:

τx : Lie(G) → TxX

u 7→ Deθx(u)

is an injective differential operator with injective symbol, then The quotient is a smooth I.L.H.
manifold equipped with the induced L2-structure and the canonical projection π : X → X/G
yields an I.L.H. principal fibre bundle.

Let us now turn to three examples in quantum field theory; Yang-Mills, Seiberg-Witten and string
theory which use the above theorem.

5.3 Configurations in Yang-Mills gauge theory

Useful references are [10], [12], [29], [34], [40], [52].

G denotes a fixed compact connected Lie group.

Let P be be a smooth principal bundle based on a closed manifold M with structure group G.
Let adP := P ×G Lie(G) be the the vector bundle based on M with typical fibre given by the Lie
algebra Lie(G) of G associated to the adjoint action of G on Lie(G). Let us set E := adP and
F := T ∗M ⊗ adP , a vector bundle the sections of which are 1-forms on M with values in adP .

The space of configurations: Let C(P ) (resp. Cs(P )) denote the space of smooth (resp. Hs) connec-
tions on P . Since a connection on P is a G-equivariant Lie(G)-valued one form ω on P such that
ω(X̃) = X ∀X ∈ Lie(G) (X̃ is the canonical vector field generated by X), two connections differ
by a horizontal one form on P and hence an adP valued one form on M . C(P ) (resp. Cs(P )) is an
affine I.L.H. (resp. Hilbert) space with tangent vector space C∞(F ) (resp. Hs(E)).

The gauge group: Let EG := P ×G G where G acts on itself by the adjoint action, then the set
C∞(EG) (resp. Hs(EG)) of smooth (resp. Hs-Sobolev) sections of EG is an I.L.H. (resp. Hilbert)
Lie group modelled on C∞(E) (resp. Hs(E)). It corresponds to the group of automorphisms of P
that cover the identity map on M .

The space of irreducible configurations: A connection A on P induces a covariant derivation ∇A

on adP from which one can define a differential operator of order 1:

dA : Ω0(M,E) = C∞(E) → Ω1(M,E) = C∞(F )

σ 7→
(
X → ∇A

X(σ)
)
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which extends to the exterior differential dA : Ω∗(M,E)→ Ω∗+1(M,E). The operator dA is generally
not injective so that we need to restrict ourselves to irreducible connections, namely those for which
dA is one to one. Notice that when A is reducible, an element u ∈ KerdA generates gauge transfor-
mations gt := etu that leaves A fixed. The space C̄(P ) (resp. C̄s(P )) of irreducible smooth (resp. Hs)
connections on P ) is also an I.L.H. (resp. Hilbert) manifold modelled on C∞(F ) (resp. Hs(F )).

An L2-structure on the configuration space: Since G is compact, its Lie algebra Lie(G) can be
equipped with a positive definite inner product which is invariant under the adjoint action. The
bundle E = adP thus inherits an inner product which, combined with the Riemannian metric on M
yields an inner product on F = T ∗M ⊗ adP . Hence, the configuration space C(P ) which is modelled
on C∞(F ) can be equipped with an L2-metric obtained by integrating along M the inner product
on F . This metric is invariant under the action Θ.

The gauge group action: The I.L.H. Lie group C∞(EG) acts smoothly on the I.L.H. space C(P )
of smooth connections on P :

Θ : C∞(EG)× C(P ) → C(P )

(g, A) 7→ A · g := A+ g−1dAg.

The action Θ is L2-isometric and it induces a smooth, free and proper action on the I.L.H. space of
irreducible configurations:

Θ̄ : C∞(EG)/Z × C̄(P ) → C̄(P )

(g, A) 7→ a · g := A+ g−1dAg.

Here Z is the center of C∞(EG) and corresponds to C∞(P ×G Z(G)) where Z(G) is the center of G.

The tangent operator τx: It is the tangent operator at identity to θA := Θ(·, A) and therefore
corresponds to the first order differential operator dA : C∞(E)→ C∞(F ) which has injective symbol.

The moduli space of inequivalent connections: Applying the slice theorem to the I.L.H. gauge group
quotiented by its center G := C∞(EG)/Z acting on the I.L.H. manifolds of irreducible configurations
X := C̄(P ) shows that the moduli space X/G of inequivalent irreducible connections on P is a smooth
I.L.H. manifold.

5.4 Configurations in Seiberg-Witten theory

Classical references are [32], [35].

The setting is similar in spirit to the Yang-Mills setting. Here M is a closed 4-dimensional Spinc

manifold and P̃ the lift of the orthonormal frame bundle SO(TM) to a principal Spinc bundle based
on M . Let E := M × IR and F := T ∗M ⊗ IR⊕ S+(P̃ ) where S+(P̃ ) is the spinor bundle associated
to the Spinc structure on M .

The space of configurations: Let C(L) (resp. Cs(L)) be the I.L.H. (resp. Hilbert) space of U(1)
smooth (resp. Hs ) connections on L, the determinant line bundle L associated to P̃ . The space of
smooth (resp. Hs) configurations is given by:

C(P̃ ) := C(L)× C∞(S+(P̃ ))

resp.
Cs(P̃ ) := Cs(L)×Hs(S+(P̃ )).
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It is a smooth I.L.H. (resp. Hilbert) manifold.

The gauge group: The group of smooth (resp. Hs) automorphisms of P̃ that cover the identity
on the frame bundle of M is an I.L.H. (resp. Hilbert) Lie group which coincides with the group of
smooth (resp. Hs) maps C∞(M,S1) (resp. Hs(M,S1)).

The gauge group action: An element g of C∞(M,S1) induces a bundle map detg on the deter-
minant bundle L and a bundle map S+(g) on the spinor bundle S+(P̃ ). It acts on the space of
configurations by:

Θ : C∞(M,S1)× C(P̃ ) → C(P̃ )

(g, (A,ψ)) 7→ (A,ψ) · g := (detg∗A, S+(g−1)ψ).

Irreducible configurations: Let C̄(P̃ ) := {(A,ψ) ∈ C(P̃ ), ψ 6= 0} (resp. (C̄s(P̃ ) := {(A,ψ) ∈
Cs(P̃ ), ψ 6= 0}) denote the space of irreducible configurations. It is a submanifold of C(P̃ ) (resp.
C̄s(P̃ )) as an open subset of that I.L.H. (Hilbert ) manifold. The above action is free when restricted
to irreducible configurations:

Θ̄ : C∞(M,S1)× C̄(P̃ ) → C̄(P̃ )

(g, (A,ψ)) 7→ (A,ψ) · g := (detg∗A, S+(g−1)ψ).

The action ΘA is smooth, free and proper.

An L2-isometric action: The Riemannian metric on M induces a Hermitian product on the spinor
bundle S+(P̃ ) and hence one on the bundle F . Integrating this inner product on M , yields an L2-
metric on C̄s(P̃ ) which is invariant under the Θ action.

The tangent operator τx: The tangent operator at Id to the map θ(A,ψ) := Θ̃(·, (A,ψ)) is the first
order differential operator

τ(A,ψ) : C∞(E) → C∞(F )

f 7→ (2df,−f · ψ)

which has injective symbol.

The moduli space of irreducible configurations: We can apply the slice theorem to the gauge group
G := C∞(M,S1), the space of irreducible configurations X := C̄(P̃ ) and conclude that the moduli
space X/G of inequivalent irreducible configurations is a smooth I.L.H. manifold.

5.5 The Teichmüller space in string theory

The geometric setting for string theory is also that of Teichmüller theory. Useful references are [4],
[11], [13], [51] and many references therein.

Here M is a closed Riemann surface of genus p (which we shall assume here is larger than 1),
E := IR⊕ TM and F := T ∗M ⊗s T ∗M the symmetrized product of the cotangent bundle, where ⊗s
denotes the symmetrized tensor product.
In what follows, s will be assumed large enough for the sections of the different bundles to be con-
tinuous.

The configuration space: Let M(M) := {g ∈ C∞(T ∗M ⊗s T ∗M), detg > 0} (resp. Ms(M) :=
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{g ∈ Hs(T ∗M ⊗s T ∗M), detg > 0}) be the space of smooth (resp. Hs) Riemannian metrics on M ; it
is an I.L.H. (resp. Hilbert) manifold modelled on C∞(T ∗M ⊗s T ∗M) (resp. Hs(T ∗M ⊗s T ∗M)).

The gauge group: Let W(M) := {eφ, φ ∈ C∞(M, IR)} (resp. Ws(M) := {eφ, φ ∈ Hs(M, IR)}) be the
group of smooth (resp. Hs) Weyl transformations, D(M) := {f ∈ C∞(M,M), f−1 ∈ C∞(M,M)}
(resp. Ds(M) := {f ∈ Hs(M,M), f−1 ∈ Hs(M,M)}) the group of smooth (resp. Hs) diffeomor-
phisms of M . W(M), D(M) are I.L.H. Lie groups modelled on C∞(M, IR), C∞(TM) respectively.
For fixed large enough s, Ws(M) is a Hilbert Lie group, but Ds(M) is not; it is a Hilbert manifold
modelled on Hs(TM) which is only a topological group. The I.L.H. setting is therefore useful to put
a Lie group structure on diffeomrophisms.

Let D0(M) denote the connected component of the identity map in D(M) and let

G := D0(M)�W(M)

where � stands for the semi-direct product, namely the product with a twisted product law (f, φ)�
(f ′, φ′) := (f ◦ f ′, φ ◦ f ′ + φ).

Group actions: The Weyl group W(M) acts on the configuration space M(M) by pointwise multi-
plication:

W(M)×M(M) → M(M)

(φ, g) 7→ eφg

and this I.L.H. action is smooth, free and proper. The set

Conf(M) :=
{

[g] := {eφ · g, eφ ∈ W(M)}, g ∈M(M)
}

is an I.L.H. manifold, the manifold of conformal structures. It is diffeomorphic to the I.L.H. manifold

J (M) := {J ∈ C∞(TM ⊗ T ∗M), J preserves orientation and J2 = −I}

of smooth almost complex structures on M .

Because the genus is assumed to be larger than 1, in each conformal class [g] of g ∈ Ms(M),
there is an smooth metric with curvature −1. Let us set M−1(M) := {g ∈ M(M), sg = −1} where
sg is the scalar curvature of g.
There is a diffeomorphism of I.L.H. manifolds [51]:

M−1(M) ' J (M) ' Conf(M).

The gauge group G of interest to us acts on M(M) by:

D0(M)�W(M)×M(M) → M(M)

((f, φ), g) 7→ f ∗eφg

and the action is smooth, free and proper (using here again the fact that the manifold has genus
larger than 1).

An L2-metric on the configuration space: In order to understand the quotient space, we use a split-
ting of the tangent space to the manifold of metrics. It is isomorphic to the space of covariant two
tensors and splits into pure trace and traceless two covariant tensors:

TgM(M) ' C∞(T ∗M ⊗s T ∗M) = C∞(M, IR) · g ⊕ C∞0,g(T ∗M ⊗s T ∗M)
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where C∞0,g(T
∗M ⊗s T ∗M) := {h ∈ C∞(T ∗M ⊗s T ∗M), trg(h) := gabhab = 0}. This splitting is

orthogonal w.r.to the inner product induced by the metric g on M on the space of smooth covariant
two tensors. This inner product on TgM(M) induces an L2-metric onM(M) which is only invariant
under D(M) but not under W(M). As we saw above, the action of the Weyl group onM(M) being
a straightforward pointwise multiplication, the fact that it is not L2- isometric is not a major ob-
struction to apply the slice theorem when taking the quotient. It is however a serious obstacle from
the path integration point of view and this non invariance of the metric under Weyl transformations
is a source of conformal anomaly.

The Faddeev-Popov operator: Using this L2-orthogonal splitting of TgM(M), the tangent map at
(Id, 1) to the map θg := Θ(·, g) reads:

τg : C∞(TM)� C∞(M, IR) → C∞0,g(T
∗M ⊗s T ∗M)⊕ C∞(M, IR)

(u, λ) 7→ (Pgu, trg(∇gu) + λ · g)

where∇gu is the symmetric covariant 2-tensor given by Lie derivative of g in the direction u, trg(∇gu)
its trace w.r.to g. The operator

Pgu := ∇gu−
1

2
trg(∇gu) · g,

called Faddeev-Popov operator,is the traceless part of ∇gu. It can be shown that the operator Pg has
injective symbol.

The Teichmüller space: Up to the fact that the action is isometric only for D0(M), a discrepancy
we argued is only a minor difficulty when applying the above theorem because the action of the
Weyl group is rather straightforward, we can apply the slice theorem. The quotient space, called the
Teichmüller space

T (M) :=M(M)/G(M)

is a smooth finite dimensional manifold (its dimension over IR is 6p− 6) and we have the following
diffeomorphisms of finite dimensional manifolds [4], [51]:

T (M) ' J (M)/D0(M) ' Conf(M)/D0(M).

Acknowledgments. I would like to express my gratitude to Alexander Cardona and Jean-
Pierre Magnot for a careful reading they made of a first version of the manuscript, which was very
useful to make various improvements. Many thanks also to Hernan Ocampo for his comments on
a preliminary version of the text. I am indebted to Dominique Manchon for his helpful remarks
which were crucial to repair some incoherences in a preliminary version of this manuscript. I am also
grateful to many students, both in France and in Colombia, who by their questions and remarks dur-
ing the lectures I gave on parts of these notes, helped me improve their presentation and formulation.

References

[1] J.F. Adams, Lectures on Lie groups, Benjamin-Cummings 1967

75



[2] R.A. Adams, Sobolev spaces, Academic Press 1975

[3] R. Abraham, E. Marsden, Foundations of mechanics, Benjamin-Cummings 1978

[4] S.Albeverio, J. Jost, S. Paycha, S. Scarlatti, A mathematical introduction to string theory-
variational problems, geometric and probabilistic methods, London Math. Soc. lecture Notes
Series 225, Cambridge University Press 1997

[5] L. Baggett, Functional Analysis, A primer, Dekker 1992

[6] N. Berline, E.Getzler, M. Vergne, Heat-Kernels and Dirac Operators, Grundlehren Band
Springer Verlag 1991, 2nd. ed. 1997

[7] J.Bertin, J.-P. Demailly, L. Illusie, C.Peters, Introduction à la théorie de Hodge, Panoramas et
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