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PART I: Regularisation procedures

Abstract: We present a unified mathematical framework to describe various regularisation techniques
used both in mathematics and physics when making sense of a priori divergent sums or integrals. This
presentation involves classical pseudodifferential symbols in an essential way.
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1 Regularised evaluators

“Evaluating” meromorphic functions in one variable at zero with poles at that point requires regu-
larising. We describe and compare various regularisation methods one can use to extend ordinary
evaluators at zero to certain algebras of meromorphic functions. The Mellin transform proves to be a
useful tool in that context.

1.1 Minimal substraction scheme

Let Mer’é (C) be the germ of meromorphic functions at zero ! with poles at zero of order no larger than
k, and let Holp(C) be the germ of holomorphic functions at zero.

Definition 1 We call regularised evaluator at zero any linear map A : Merg(C) — C which extends
the following evaluator at zero on holomorphic functions at zero:

evg : Holp(C) — C
fo—= 10

One way of building a regularised evaluator at zero is to compose the evaluator with an appropriate
Rota-Baxter operator.

Definition 2 A linear operator R: A — A on an (not necessarily associative) algebra A over a field
F is a called Rota-Baxter of weight A € F' if it satifies the following Rota-Baxter relation:

R(a) R(b) = R(R(a)b) + R(a R(b)) + A R(ab).
Remark 1 If A # 0, replacing R by \™' R gives rise to a Rota-Baxter operator of weight 1.
If f(z) = Y02, aiz* we set Res? (f) := a_j called the j-th residue of f at zero.
Proposition 1 Let Merg(C) := U® ;Merf(C). The map

Ry : Merp(C) — Holy(C)

k
f = |lz—f(z Z 0 if fe Merf(C)

j=1

satisfies the following property:

Ri(f9) = R (f) Ry (9) + Ry (f R-(9)) + Ry (9 R-(f))-

Equivalently, both the map Ry and the map

R_=1- R4 :Merg(C) — Merg(C)
r Res
fo— Z 0 if feMerk(C)

are Rota-Baxter maps of weight —1 on Merg(C).
Proof: The maps R, and R_ are clearly linear. The following straightforward identity

Ri(fg) =R (f) Ry(9) + Ry (f R-(9)) + R+(9 R—(f)) (1.1)

i.e equivalence classes of meromorphic functions defined on a neighborhood of zero for the equivalence relation f ~ g
if f and g coincide on some open neighborhood of zero.
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is says that the contributions to the holomorphic part of the product differ from the product of the
holomorphic parts of f and ¢ by contributions involving residues of f through R_(f) or residues of g
through R_(g). Setting R_ = Id — R, shows its equivalence with the Rota -Baxter relation for R:

Ri(fg9) = Ri(f) Re(9) + Ry (f R-(9)) + R+ (9 R-([))
= Ri(fg)=Ri(f)Re(9) + R (f (9 — R(9) + Ri(g (f — R+(f)))
= Ry(f9)=Ri(f) Ri(9) + 2R+ (f g9) — R+(f R+(9))) — R+ (9 R+(f)))
= Ri(f)R4(9) = Ri(f R+(9)) + Ri(9 R+(f))) — R+(f 9).

Setting Ry = Id — R_ then shows the equivalence with the Rota-Baxter relation for R :

Ri(f)Ri(9) = R (f Ri(9)) + R (g R (f))) — R+ (f 9)

(f=R-(f))(g—R-(9)) = f(9g—R-(9)) —R-(f (9 R-(9))
g(f=R-(f))—R-(g(f—R-(f))— fg+R-(fg)
fg+R(f)R-(9)—fR-(9)—9gR-(f)=fg—fR-(9)— R-(fg)+R-(fR-(9))
9f—9gR-(f)—R-(9f)+R-(9R-(f)) — fg+R-(fg)

R_(f)R-(9) = R-(f R-(9))) + R—(9 R—(f)) = R-(f 9).

T+1+1

O

Combining the evaluation at zero with the map R —called minimal substraction scheme by physicists—
provides a first regularised evaluator on Merf(C) at zero:

evi® : Merf(C) — C
fo= evg®f(z) ==evoo Ry(f), (1.2)

i.e. a linear form that extends the ordinary evaluator evo(f) = f(0) defined on the space Holy(C) of
holomorphic functions at zero.

Proposition 2 Any linear form on Merg (C) which extends evy is of the form:

)\_evog+ZuJRes0
J=1

for some constants p1,- -, pg-
In particular, all linear forms on Mer(lJ((C) which extend evy are of the form:

A =evy® + uResy
for some constant p.

Proof: A linear form X\ which extends evq coincides with evy on the range of R4 and therefore fulfills
the following identity A o R = evg o Ry = evy®. Thus, for any f € Mero (C),

M) = ABL() + AME-(]))

k
= evog—l-Z/\z 7)Res)(f)

Jj=1

= evog—i-Zc] Res)(f)

Jj=1

where we have set ¢; := A(z77). O



1.2 The Gamma function extended to negative integers

The map ¢ : © — e defines a Schwartz function on [0, 4+o00[ such that all its derivatives are also
Schwartz functions on [0, 4+o0c[. The integral

T(s):= /000 5 p(x) de = /000 5l e " da

defined for Re(s) > 0 is called the Gamma function.
Repeated integration by parts on Re(s) > 0 yields:

I(s+k)=s(s+1)---(s+k—1)T(s) if Re(s)>0.

A similar formula yields a meromorphic extension to the whole plane defined recursively on half planes
Re(s) > —k for any positive integer k by

I(s+k)
(s4+1)---(s+k-1)

D(s) = (1.3)

thereby extending the following formula obtained by rThis meromorphic extension denoted by the same
symbol I therefore has simple poles at negative integers. The following straightforward statements are
useful for later applications.

Proposition 3 1. The Gamma function is differentiable at any positive integer k and:

k—1

Py =(k—1)! Vke N, T'()=—y D'(k)=Tk) (S 2-v] vkeN—{1},

=17

where
o0
v = —/ logxe " dx
0
is the Euler constant.
2. The Gamma function has simple poles at any non positive integer k with residue:

(1t

Res_,I' = o

Furthermore,

(1" (g~ 1
(k) i ey o T(—k ) = (02
j=1
3. The inverse Gamma function ﬁ defined on the half plane Re(z) > 0 extends to a holomorphic

map at z =0 and
1

(2)

=2+ 722+ o(2?).

—

In particular, (%)I (0) =1.
Proof:

1. By integration by parts we have :
k)y=(k—1)! Vke IN

and the derivative of I' at 1 reads:

I'(1) = 0.T(1 + 2)o=0 = / logre " dx = —v.
0
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The derivative at k € IN — {1} reads:

(k) = 0:(D(z+k)).

=0

O ((k+z—=1)---(z+1)-T(z+1))_,
= 62((k+z—1)---(z+1))‘z:0-r(1)+(k—1)!r’(1)
-1 kfll

= (k=1 Z;— (k) Z;—v ;

so that for &k > 2

F/k k—1

(k)

(1.4)

Ml)—l

j=1

2. By (1.3), the Gamma function has a simple pole at any non positive integer k with residue:

. . L(z+1) (D) _ (b*
Re&;ﬁ:igf(—k%—z)z:ig%(_k_i_z)...(_l_’_z)zz: o =0
Using (1.3) again we write
["8(—k) = evg®ol(—k+")
1)k

~ lm (F(—k%—z)—é( kll) )

B I'(z+1) (—1)F

o zhg%); ((—k+z)-~-(—1+z)_ k! )

B I'(z+1)

- 3Z(<—k+z>---<—1+z>>z

Jj=1
3. By (1.3) we have ﬁ = z(zHF)(fJ(rsz)rk_l) so that in particular
1 z z 4?4 ( 2)
= = =z z oz ).
I(z) T(z+1) TQ)+I'(1)z+o(z) 7

It is useful for later purposes (related to dimensional regularisation) to express the volume of the
unit sphere in terms of the Gamma function.

Lemma 1 The volume of the unit sphere S 1 in RY is given by:

ok g

Vol(§4-1) = s (1.5)
=
if d =2k is even and
k!Trk22k+1 7T§l_1 2n—1 r (n_Jrl)
1 d—1y _ — 2
VollS™) = =55 T'(d)

ifd=2k+1 is odd.



Remark 2 Since physicists usually work in dimension 4, they are mostly interested in the even di-
mensional case.

Proof: Recall the well-known formula:

/le el dy = 1% (1.6)
—l=? g = - / =23 .
e r = e T,

Juot o= 11,

2 2 00 %)
</ eIQdI> = / / e rdrdf = 7r/ e “du =m.
R 0 0 0

/ e 17 dy = Vol(S971) / e L,
R4 0

so we need to compute the integral [ e~ r4=1dr to determine the volume of S"~1,

Indeed, since

(1.6) follows from

On the other hand,

o If n = 2k, iterated integrations by parts yield

oo 1 oo
/ e lgr = ——/ —ore~" P2k g
0 2 Jo

(k- 1)/ e~ p2k=D-1g,
0

ey [t = B

Thus

e If n =2k + 1, similarly, we have

oo 1 oo
/ ey = ——/ —ore~ " p2k—1 gy
0 2 /o

1 o0
= —(2k- 1)/ e r2h 2y
2 0

2k — 12k — e
= 3 / e 2k gy
0

2 2
 2%k—12k-3 1/°° ey
T T2 2 2), ¢ ¢
2% —12k—3 1
= ﬁ._2 — g
Hence kok kokok ko2k
2 2kok ] 92k |
Vol($2+) = u =7 =z
2k —1)(2k—3)---1  (2k)! (2k)!

1.3 The Mellin transform and regularised evaluators at zero

Let us define another evaluator at zero on another set of maps which we are about to introduce.



Definition 3 Let b be a real number. Let fg’k (resp.FY*) denote the vector space generated by smooth
functions on |0, +o0o| with asymptotic behaviour at zero of the type

k+1 oo
NOZO‘JE a +Z Z ﬁjle a log e—l—ZZWNe log' € (1.7)
=0 i= b@ =0 j=0
for some positive ¢ and some real numbers b, a;, B, i1, 5 € N, =0,---,k (depending on f) (resp.

and such that for large enough €,

|[f(e)] < Ce™*

for some A >0, C >0.)
Let us set
Fi = U ]_-g,k; (resp. FF:= U FoR).
beC beC

For any non negative integer k, the linear space F¥ (resp. JF*) contains the space Cp([0,+00[) of
continuous functions on [0, +o00[ (resp. the space S([0,+o0[) of Schwartz functions on [0, +00[) and
the linear form

evp® : FUF €
fo= atyo if beZx
f= 0 if b¢Zs,
is a regularised evaluator on F} (and hence on F*) which extends the ordinary evaluation at zero on

C([0,400[) (resp. S([0, +o0]).
The Mellin transform which involves the Gamma function, carries a function in F* to one in Mer(C).

Proposition 4 The Mellin transform of a function f € F*

1 oo

z = M(f)(2) ::—/ e f(e) de (1.8)
I'(z) Jo

defines a meromorphic map on the complex plane with poles of order < k+1 at 0. In particular, it is

holomorphic ? at z =0 if f has no logarithmic divergence.

With the notations of Definition 3, the finite part reads:

K+l qyi+1 (-1 (+1) 0) 8,
o M) = of (0 + 3 I (O

=1

and

k+1 o 4y (I=7)
Ry (M() = 3 5 (£) )

S (=)

In particular,
Res§+1 (M()(2) = (=D (k+ D!'0,k+1

and E+1 1y (41)
oo MU = a0+ 3 gy (Resh MUD) R ().
When k = 0 these formulae boil down tol_ 1
eVir® 0 M(f) = o (€) + 7 Reso (M(f) (1.9)

2The order of the poles at z = 0 is given by the power of the logarithmic divergence of f at e =0



Proof of the proposition: For an integer N chosen large enough

MG = g [ e o

1 12_1eeiooez_lee
- F(Z)/Oe f()d+r(2)/l fo)d

k 1
= e e de—|— Z 6-71/ € e log ede
) =0 igmj<n 7P
1 k+1 N 1
+ I‘(Z)ZZWJ/ &1l logl e de
1=0 j=0

1 T
= ZO‘J i=b
P& iz~ 1=+,
k l 00 j—b 1
1 ! (_1)1 o I—1
) L ]
=0 i=0 j:O,%@ q 0
k+1 1 NS : 1
1 (=1 [ e i }
+ Vil ——log e
F(z);zzo (1 —1q)! jgo P (2 4 5)iHt 0

where we have used integration by parts repeatedly to write

l

1 i atl 1
(=1 1! { et I—i }
€ logl e de = : — log ‘€| .
/0 Zi:o (=0 [+ .
This shows the existence of a meromorphic extension on M(f) in a neighborhood of z=0.

—1y(m) pdzb JETERT
Writing F(lz) =M WZ””—I—O(ZM), we see that only FO(‘;') [ﬁ—q} and ZkH l'( 1) Dm0 i [ i }

=1 Jjo—b T+1
m e (=+7)

(which corresponds to the terms [ = i) can actually contribute to the finite part. Since (%) (0) =1,
their contribution amounts to

! k )" (L (1+1)
evp o M(f) = 5jb( ) +Z (F) (0)70,1

=0

k (1+1)
_ (£)" 7 (0) 70
= fp_of(e)+ ;(—1)1 Fl—i——l

since fp._qf(€) = @;jd;—p + 70,0. Similarly, the only terms contributing to the complex residue come

z+3 1
from ZHl l|1£(z1))l 2720 Vi [#}0 and we have

KL 1y (1—r)
R (M(NEN = > T (5) O

—r)!
Pl (=)
using the fact that %(O) = 0. In particular,
Resg'H (M()(2) = (=D (k+ D!'0,k+1



and
l 1+1
You = (—1)! Resy (M(f)) —”Res(f (M(f)

so that
. IR0
evp® o M(f) =1Ip—of(€e) + Z F(l_i_il)l

=1

(Resh (M(£) — Rest* (M(1)))
This ends the proof of the proposition. 0O

The regularised evaluator at zero on Mer, therefore relates to the regularised evaluator at zero on
FF as follows:

Corollary 1 For any f in F* and with the notations of Definition 3, we have:
k+1 (i)(lH) (0)

evi® (M(f)) —evi®(f) = > L

2 S (Resé/\/l(f) - Resffl/\/l(f)) )

If k=0 then
evg ® o M(f) — evy®(f) = yResoM(f).

1.4 Discrepancies

Whereas evaluators are invariant under a change of variable, regularised evaluators are not in general.
Indeed, given a holomorphic & function at zero such that h(0) = 0, the ordinary evaluator on Holy(C)
is invariant under the change of variable z — h(z):

evo(f o] h) = evo(f).

In contrast, such a change of variable produces from the regularised evaluator ev(® on Mer(C) another

regularised evaluator:
heevy®(f) :=evy®(f o h)

on Mer,(C).
Proposition 5 For any f in Merk(C), for any h € Holy such that h(0) = 0 and h'(0) # 0, the

reparametrised reqularised evaluator h.evy® differs from the ordinary regularised evaluator evy™® by a
linear expression in the jets of h at zero up to order k:

k 93 (k=3) (0 4
povs() v = 3 D O ey

where we have set k(z) = @

Remark 3 A more explicit formula in terms of jets of h at zero requires Fad di Bruno’s formula [FdB]
which generalises the chain rule to higher derivatives.

Proof: We write f(z) = R_(f)+ R+ (f) = Z?Zl ajz7 + Ry (f)(2) so that foh(z) = R_(f)oh(z)+
Ry(f)oh(z) = 2521 ajh(z)_j + R (f) o h(z). Since

evy 8 (R4 (f)oh) =evo (Ry(f)oh) =evo (R4(f)) = evy®(f)
we infer that

k
evy®(foh) = Zajevgeg (2= h(z)77) +evg®(f).
j=1

We now compute each term evy™ (z — h(z)77). Since h(z) = zk(z) with k holomorphic at zero such

that &£(0) # 0, we have:
&7 (k7) (0)

evi® (2 h(z)™7) = evic® <z - = k(z)‘j> -

zJ



from which we infer the result of the proposition. 0O

Whereas the ordinary evaluation at zero is compatible with the product on holomorphic functions
around zero, regularised evaluators do not a priori factorise on products.

Proposition 6 For any f € Merf(C) and g € Merl(: C) for some non negative integers k and I,

! j _ LI .
evi®(1g) vy (1) evii(a) = Lo Resige) + 3 LoD Resi ).

i=1 i=1

Proof: By (1.1) we have

evg® (fg) = evo(R(fg))
= evo (R (f) Ry (9)) +evo (R (f R-(9))) + evo (R (9 R—(f)))
= evo (Ry(f)) evo (R (9)) +evo (R+(f R_(9))) +evo (R (g R-(f)))

() , k@0 .
= evIB(f) eviB (g) + Z f esgg + Z gz—'() Resy f,
i=1 ’

from which the result of the proposition follows. 0O
Multiplication by a holomorphic function h around zero such that h(0) # 0 therefore yields another
regularised evaluator ev(® on Mer(C):

f o eviES(h f).
Corollary 2 For any f in Mero(C) with poles at zero of order k, the reqularised evaluator
frevg®(hf)

differs from the regularised evaluator f — evo(h)evy™® by a linear expression in the jets of h at zero
up to order k:

hi

k
evy 8(h f) = evo(h) evy®(f) + Z Reséf(z).

i=1

Proof: This follows from the above proposition applied to f/ = h. O

10



2 A first characterisation of the noncommutative residue

We characterise the noncommutative residue as the unique (up to a multiplicaitve factor linear form on
symbols which vanishes on smoothing symbols and on partial derivatives. later in these notes, we show
that this chracterisation also holds dropping the assumption that it vanishes on smoothing symbols.

2.1 Classical symbols with constant coefficients on IR?

We only give a few definitions and refer the reader to [Sh, Ta, Tr| for further details on classical
pseudodifferential symbols.

For any complex number a, let us denote by S _( IRd) the set of smooth functions on IR called symbols
with constant coefficients, such that for any multiindex 8 € IN? there is a constant C (8) satisfying the
following requirement:

0o (&) < CB)I(L + |ehRet 17l (2.10)

where Re(a) stands for the real part of a, || for the euclidean norm of £. We single out the subset
052 (RY) € 8¢ (IRY) of symbols o, called classical symbols of order a with constant coefficients, such
that

Zaa7 &) +owy(€) vEe RY such that [¢]>1 (2.11)

where o(y) € S¢¢ N IRd) and o,—;,j € INg are positively homogeneous of degree a — j.

Example 1 Any polynomial of total degree M in the coordinates x; of & defines a classical symbol of
order M.

Example 2 The map £ — \‘5\2% has the following asymptotic behaviour
—2k—2
|€|2+1 ~¢]—o0 Z |§| (2.12)
and defines a classical symbol of order —2; only if n = 2p is even does the exrpansion contain a

homogeneous term of degree —n with coefficient given by (—1)P~1.

The ordinary product of functions sends C'S% (IR%) x C'S? .(R?) to C'S2t(IR?) provided b — a € Z;
let
CSee(RY) = (| €8¢ (RY) (2.13)

aeC
denote the algebra generated by all classical symbols with constant coefficients on RY. Let

CS;(RY) = (1) OS¢ (R

aeC

be the algebra of smoothing symbols. It follows from (2.10) that
fFEeCS™(RY) = |f() <C{)" Vae R

and hence that
CS~(RR%) c S(RY),

where S(IR?) is the algebra of Schwartz functions on IR?. We write o ~ ¢’ for two symbols o, o’ which
differ by a smoothing symbol.
We also denote by CS<P(IR?) := URre(ay<p C5¢c( IRY), the set of classical symbols of order with real
part < p and by
CSZ(RY) = ] CS: (2.14)
acC-Z

the set of non integer order symbols.
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2.2 Closed linear forms on symbol valued forms

Symbol valued forms are defined in a similar manner to ordinary differential forms. Let S be a subset
of CS..o(IR?) and let

OFS:={> " as(§)dér, ore S},

|I|=k

the set of S-valued degree k forms on IR?. Provided A is stable under derivatives, exterior differenti-
ation on forms extends to S- valued forms (see (5.14) in [LP]):

d: Qs — QFfls

a(€)d, A+ Nd&, — Y 0ia(€)d& Ad&, A NdE,.

i=1
We call a symbol valued form « closed if da = 0 and exact if & = d § where 3 is a symbol valued form;
this gives rise to the following cohomology groups

H*A:={a € QFS, da=0}/{dp,3ec Q" 1S}
A linear form A on S extends to S-valued forms by:
A:QS - C
a(x)dzy, N Ndzg, —  Jg—gNa) if i <0 <.
It is closed if it vanishes on exact forms in which case it induces a linear form
A:H*S —C,

which therefore lies in the dual (Hd(A))/.
Let us recall Stokes’ theorem: If M is an oriented d-dimensional manifold with boundary M equipped
with the induced orientation, then for any d — 1 form « on M with compact support,

/daz/ Q.
M oM

In particular, if M is boundaryless, fM da = 0.

We shall use the following consequence of Stokes’ theorem: Let M be a compact oriented d-dimensional
Riemannian manifold with boundary OM equipped with the induced metric, with outward pointing
unit normal vector field ¥ on M, then for any smooth vector field X on M,

/diVdeolz/ (X,v)do, (2.15)
M

oM

where dvol is the volume measure on M and do the induced measure on the boundary.

If M is a submanifold of IR? equipped with the measure induced by the canonical measure on RY,
we apply the above to the vector field X = fe; for some ¢ in {1,---,d} where {e1,---,eq} is the
orthonormal basis in IR?, and any smooth function f on M. Equation (2.15) reads

/ Ox; f dvol = f e, v)do. (2.16)
M oM

Before we give an exemple in the case of the sphere S9! = {z ¢ ]Rd,zle 2? = 1} seen as a

submanifold of R, let us recall the expression of the measure on S%1 induced by the canonical
volume form on R

Lemma 2 [BG] The measure on S4=1 induced by the canonical volume form dvol := dxy A -+ A dxg

on R reads:
d

dus(z) = Z(—l)jf1 xjdry N NdT; N+ Ndzg.

Jj=1

Moreover, for any transformation T in GL4(IR) and any continuous function f on R?

1
Tdpus = ——— dig. 2.17
/Sdil foTdus detT] Jgas fdps (2.17)

12



Proof: Let us consider the Liouville (or radial) field

L9
X(@) =S zi—
0= i
on IR, which transforms the canonical volume form w(z) = dz; A - A dzg on R? to a d — 1-form
d .
ixw(x) = Z(—1)371 rjdry Ao ANdZT; A Adxg.
j=1

At any point z € S?71, the vector X () is normal to S?~!. A basis (£1,--+,&4—1) of TS can be
completed to a basis (X (z),&1,- -+ ,€4-1) of T, IR? such that

ixw(@) (&1, 8a-1) = w(@)(X (@), &1, §a—1) #0

since w(x) is a volume form on R?. Tt follows that ixw(z) defines a volume form on S¥-1. Since
X () is the outgoing normal unitary vector field to S?~!, the basis (X (x),&;,--+,€4-1) can be chosen
orthonormal and positively oriented in which case w(z)(X (x),&1, - ,&4—1) = 1 so that ixw(z) is in
fact the canonical volume form on the submanifold S%~* of IR%.

The covariance property (2.17) follows from that of the volume measure on IR? since

() dps(T(a)) = () irxoTw) = ix (T7) wlTw) = ropyieo(w) = cqoo diss (2.

O

Example 3 Let us consider the boundaryless unit sphere S = {¢ € R%,|¢| = 1} then for any
smooth function f on IR?, we have

/ azfdus = 07

Sd*l

so that the map X\ : 0 +— defl 0; f dus is closed.

Example 4 Let us consider the unit ball M = B(0,1) := {¢ € RY, |¢| < 1} with boundary the unit
sphere S = {¢ € R, |¢| = 1}. Then

/ Oif dw = / f{ei,v)dus. (2.18)
B(0,1) Sd-1

Since the subalgebra C'S;2°(1RY) of the algebra of Schwartz functions S(IR?) is stable under deriva-
tives, we infer the following straightforward statement.

Lemma 3 Integration along IR? defines a linear form on CSfOO(IRd) which vanishes on partial
derivatives.

Proof: By Equation (2.18)
/ dif dvol = RY / (0:f)(R-) dvol
B(0,R) B(0,1)
= Rd‘l/ di (f(R-)) dvol
B(0,1)
= B[R e dus
gd—1
Since f is a Schwartz function on IR?, there is a constant C' such that
|f ()| < Cla| ™1

13



for large enough |z| so that for large enough R we have

[ aavll = ri| [ e dus
B(0,R) gd—1
< CR 'Vol (571
and
0;f dvol = lim 0; f dvol = 0.
R? R—0co JB(0,R)
O

Motivated by this example, we set the following definition.

Definition 4 A linear form on a subspace S of CS’C,C(IRd) stable under derivatives fulfills Stokes’
property (which by extension, we also call closed) if

MOio) =0 VoeS.
Let us prove an easy but very useful result.

Lemma 4 If S is stable under partial differentials and multiplication by polynomials then for any
closed linear form X\ : S — C, we have

18] < |a| = Ma"9%0(2)) =0 VoeS. (2.19)

Proof: We first observe that by asumption, 0 € S = (2 + 2°90%(z)) € S. The implcation (2.19)
then follows by induction from repeatedly applying the property A(9;7) = 0 to 7(z) = 27920 (x) with
7 € § and appropriate multiindices v and . O

Closed linear forms on €)S are in one to one correspondence with linear forms A on & with Stokes’
property since
d(odzy A Ndi; A+ Ndag) = (=1) o day A--- Adxg
— ANd(odzy A Ndi; A Adag)) = (—1)'\(8;0).

2.3 Closed linear forms which vanish on smoothing symbols

Let us first define the noncommutative residue originally introduced by Adler and Manin in the one
dimensional case was later extended to all dimensions by Wodzicki in [Wol] (see also [Wo2| and [Kal]
for a review) and independently by Guillemin [Gul].

Definition 5 The noncommutative residue is a linear form on C'SC_C(]Rd) defined by

res(o) = # /Snil o—a(§) dus(§),

where as before
d
dus(€) =3 (1) & de A AdEj A - A dEy (2.20)
j=1

denotes the volume measure on the unit sphere S4=1 in R induced by the canonical measure on that
space.

The noncommutative residue clearly vanishes on smoothing symbols, which is why we first choose to
work “modulo smoothing symbols”.

Given a subset S of CSc.(IR), we call a symbol valued form o € QS closed “modulo smoothing
symbols” if da ~ 0 and exact “modulo smoothing symbols” if o ~ d 3 where § € S is a symbol
valued form. Since a ~ df = da ~ 0, this gives rise to the following cohomology groups

HES = {a € Q'S, da~0}/{a~dp,p e A).

14



Proposition 7 The extended noncommutative residue vanishes on classical symbol valued forms which
are exact up to smoothing symbols and therefore induces a linear form

tes: H1CS..(RY) — R.
Proof: All we need to show is that the residue vanishes on partial derivatives. If o ~ 0;7, then
0_q = 0;T—4q+1 where now the index —d (resp. —d + 1) stands for the —d-th (resp. —d + 1-th)

positively homogeneous component of the symbol.
Thus, by (2.15) applied to M = S9! X = 14,1 e; we have:

/ o_qdus = / O0iT—qr1dps = / T_dt1 {(e;,v)dus =0
Sd—1 gd—1 58d—1

so that res(9;7) = 0. O

The converse which is a result of [FGLS], follows from the following elementary lemma.

Lemma 5 1. (Euler’s theorem)
For any positively homogeneous functions f of degree a on IRY — {0},

d
i=1

2. Any positively homogeneous function f on IR — {0} with vanishing residue is a finite sum of

partial derivatives, i.e. there exist positively homogeneous functions g;,i = 1,--- ,d such that
d
i=1
Proof:
1.
d
0 0 o
Dof@)mi= 5 [t =2 tf(€) =af(©)
i=1 atlt:l at‘t:l

(a) If a # —d it follows from the first part of the lemma that the positively homogeneous
function f;(x) = 2 @) oo tisfies Z?:l 0ifi = f.

a-+d
e now consider the case a = —d. In polar coordinates (r,w) € X ~+ the Laplacian
(b) W ider th d. Tn pol di (r,w) € Ry x S9! the Laplaci
reads A = — 320 92 = —r1799, (1418, ) 472 Aga-1. Since A(g(w)r?~) = 14 Aga1g(w)
we have

Agw)r*™) = f(rw) <= Aga-19 = fi , .-

Setting F(rw) := g(w) 2~ it follows that the equation AF = f has a solution if and only
if fe KerAé:d,1 i.e. if res(f) = 0. In that case, f = Ele 0; f; where we have set f; := O;F.

O

The following proposition is reminiscent of the characterisation of top degree exact forms by the
vanishing of their integral over RY.

Proposition 8 Any symbol o € CS. .( IRd) with vanishing residue is up to some smoothing symbol, a
finite sum of partial derivatives, i.e. there exist symbols 7; € C'Se. c( IRd),i =1,---,d such that

d
o~ > O (2.22)
=1
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Proof: We write o ~ Z;io X 0a_j with o,_; € C=°(TR?—{0}) positively homogeneous of degree a — j.
Since res(o,—;) = 0, by Lemma 5 there are homogeneous functions 7; ,— ;41 such that E?:l OiTi,a—j+1 =
Oq—j- Let Ty ~ Zgoil X Ti,a—j+1 then

d oo d
g ~ Z Zxam,a,jﬂ ~ Zam (223)
=1

i=0 j=0

Indeed, d;x has compact support so that the difference o — 3" | ;7; is smoothing. Since the 7; are
by construction of order a + 1, statement (2.22) of the proposition follows. O

Theorem 1 The map Tes : HECS. .( IRd) — IR is an isomorphism so that HﬂCS’C,C(]Rd) ~ IR.
Equivalently, any closed singular linear form on C'SC_C(]Rd) is proportional to the noncommutative
residue.

Proof: By Proposition 8, a form which lies in the kernel of res is exact up to a smoothing symbol valued
form, which yields the injectivity of the map Tes. It is clearly surjective; indeed let 7(&) := x (&) |¢]~¢
for some smooth function y which is one outside the unit ball and vanishes in a neighborhood of 0,
then res(7) # 0 and if we set a(§) := r;((i?), then for any A € IR, o) := A« has residue A\. Thus Tes is
an isomorphism. 0O
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3 A first characterisation of the canonical integral

3.1 Closed linear forms on smoothing symbols

The following straightforward lemma is useful to compute the de Rham cohomology groups H*S with
values in § = CSZ°(IRY).

Lemma 6 Let o € CSZ°(IRF™), then
/ (& t)dt =0 <= 3 € CS_°(RF™), such that a=9,p.
R

More precisely, using a one form e = e(t) dt € Q'CS_°(IR) chosen such that [ e(t)dt = 1, we have:

alz,t)dt = (a(a:,t) —/Roz(x,t) dt) dt + (/]Ra(a:,t) dt) e(t) dt.

Proof: The implication from right to left is clear. Setting 5(¢) := fioo a(z,u) du yields the implication
from left to right since a € CS; (R = g e CS-*(RM!). O

Proposition 9 1. H*CS;®°(RY) =0 if k < d and
HYCS>®(RY) ~ R.

2. Integration over R gives rise to an isomorphism
HICS:®(RY) — R

(6 s Q.
R

3. Any linear form on smoothing symbols which vanishes on partial derivative is proportional to the
integration map over RY. In other words,

(micsze( md))' ~ R.
Proof:

1. That HYCS;*(IR?Y) ~ R and H*CS-®(IR?) = 0 for any non negative integer k < d can be
shown by induction on d integrating along the fibres of the projection map

7: R — RF
(z,t) — ¢

to decrease the degree of the form and the dimension simultaneously. Let us make this more
precise and set for a € Q*T1CS-°(RFM)

T (e, t) dt Adxg, A~ Nday;) = (/ alx,t) dt> dwi, A~ Ndzg,,
R
which lies in Q*C'S;°(IRF) and
T ((z,t) dzy, A+ Aday,) == 0.

If for a € Q°CS:°(IRF) we furthermore set e, (a) := e A o which lies in Q*+1CS7°(R* ).
Since integration on smoothing symbols commutes with differentation:

dm, =m,d and de, =e,d. (3.24)
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Thus 7, sends H*t1CS72°(IR* 1) to H*CS-°(IR") and e, sends H*C'S®°(IRF) to H*T1C'S;2°(IRFH).
Moreover,

meoe, =1 and exom =1 in cohomology by Lemma 6. (3.25)

Hence 7, and e, are isomorphisms (inverse of each other) and H*T'C'S;°(IRF) ~ H*C'S_°(IRY).
But H'CS;°(IR) = IR; indeed, we observe that

a(t) dt = ap(t) dt + (/ma(t) dt> e(t)dt = dp(t) + (/]Ra(t) dt> e(t) dt,

which is a special instance of Lemma 6 with k¥ = 0 and where we have set 3(t) := fjoo ao(u) du
which lies in C'S;2°(TR). Thus, up to an exact form, the form a(t) dt is entirely determined by
its integral [ «(t)dt. On the other hand, H°C'S:z°(IR¥) = 0 for any positive integer k since

constant smoothing symbols vanish. Hence H*C'S;2°(1RY) = 0 for any k < d.

2. Since the integration map along IR¢ vanishes on exact forms in NCST( ]Rd), it gives rise to a
linear form

HICS;®*(RY) — R

« = .
R4

It is clearly onto since there exists 8 € Q?C'S;2°(IR?) such that Jga B =1. Since HYCS_ > ( R%)
is one dimensional by the first part of the proof, it follows that the integration map is an isomor-
phism.

3. Let 6 € Q4CS-°(IR?) such that Jra B = 1. Any smoothing symbol valued form a € QICS-*(RY)
reads o = o + (fle a) 3 where we have set ag = a — (fle a) 3. Since f]Rd ag = 0
it follows from the isomorphism [ RE ° HYCS §°(]I{d) — IR that «qp is exact. Hence, any

!
Ae (HdCSCfC"O(IRd)) acts on « by

Ma)=C / o
R
where we have set C' = \(f3).

O

3.2 Closed linear forms on the kernel of the residue

By the previous paragraph, the ordinary integral does not extend to a linear form on the algebra of
classical symbols which fulfills Stokes’ property. If we insist on extending the ordinary integral,we need
to restrict to the kernel of the noncommutative residue.

Definition 6 We call a subset
CS;2(RY) ¢ S € Ker(res)

admissible if

1. it is stable under partial differentiation

ceS=0,0eS Vie{l, -, d},

2. for o in S, the symbols T; ~ Z;io Ti.a—j X arising in the asymptotic expansion o ~ 2?21 0;Ti
(see (2.22)) can be chosen in S.

18



The kernel Ker(res) of the noncommutative residue, which is stable under partial differentiation, does
not satisfy the second requirement, since the derivatives of a homogeneous function 7 of degree —d
with non vanishing residue have vanishing residue.

Nevertheless, there are interesting subsets of Ker(res) with the above properties.

Example 5 The non integrality of the order of the symbol is a property which is stable under partial
differentiation and hence so is the set CSF%( ]Rd) of non integer order classical symbols with constant
coefficients. Furthermore, CS#%(R?) C Ker(res) and the 7 arising in (2.22) also have non integer
order, so that CS#%(TR?) is an admissible subset of Ker(res).

Example 6 The odd-class property for a symbol o in CS..( ]Rd) of order a with homogeneous com-
ponents, namely that it satisfies the following requirement

Ta—j(=€) = (=1)"aa;(€) Vje Ny,
is a property stable under partial differentiation and hence so is the set
OS¢ (RY) = {o € OSZ(RY), 04—j(=€) = (=1)*Tou—;(&) V€€ R if ord(o) = a}

of odd-class classical symbols with constant coefficients. An easy computation further shows that
CS24(R?) ¢ Ker(res) if d is odd. In that case, it is easy to check that the 7;,_; arising in (2.22)
also lie in the odd-class. Thus, CS°(RY) is an admissible subset of Ker(res) when d is odd.

Example 7 Similarly, the even-class property oa_j(—€) = (=1)*"7T1g,_;(€) is stable under partial
differentiation and hence so is the set

CSEE(RY) = {o € CSE(RY),  0aj(=) = (-1)* M 0a;(€) VE€ R? if ord(o) = a}

of even-class classical symbols with constant coefficients. An easy computation further shows that
CSever(IRY) € Ker(res) if d is even. In that case, it is easy to check that the T; 4 ; arising in (2.22)
also lie in the even-class. Thus, C'SS( IRd) is an admissible subset of Ker(res) when d is even.

The following result plays an important part in the following.

Theorem 2 1. Let
CS-=(R% c A C Ker(res)

be an admissible set.

The ordinary integration map fle uniquely extends to a linear form on S with Stokes’ property
which we call canonical integral and denote by JC]Rd'

Any other linear form on S with Stokes’ property is proportional to JC]Rd'

2. If moreover S is invariant under the action of GLq(R) i.e.:

ceS=c00CeS VCeGLyR),

then fpa is covariant i.e.:

detC| ][ coC=4 o YCeGLAR). (3.26)
R R
Proof:

1. Uniqueness: Let A be a linear form on A with Stokes’ property. When restricted to C:S2°(TR),
A induces a linear form on the algebra of smoothing symbols with Stokes’ property. By Proposi-
tion 9, this restriction is proportional to the ordinary integration map [ Ré:

Jee IR, st. A =c .
’ leszeo(may R4
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But by Proposition 8, the linear form A, is uniquely determined by its restriction to smoothing
symbols. Indeed, by the assumptions on S, given a symbol ¢ in S we have

d
I, g €S st s, :ZU—Z@iTi IS CS;E?(IF{d).
i=1

Since A vanishes on partial derivatives we infer that

Rd

d
No) = SO AT + Also) = Alss) = ¢ / 5

1=
is uniquely determined by its value on the smoothing symbol s,,.

. Existence: We need to prove the existence of a linear form on A with Stokes’ property which
extends ordinary integration. We first observe that the integration map extends to a linear form
on CSS- d(]Rd) NS with Stokes’ property since symbols of order with real part < —d lie in
LY(RRY).

We now want to extend it to the whole set S. By (2.11) a symbol o € S can be written:

N—-1
Ta—j(E) X(&) + oy (§) VE€ RY
j=0

where y is a smooth function which vanishes in a neighborhood of 0 and is identically one outside
the unit ball and where o(y) is a symbol of order < —d. By linearity, it therefore suffices to
determine A on a finite number of expressions of the type o,—; x involving positively homogeneous
components o, ;.

We therefore need to define a linear extension A of [ Re O expressions of the type fx with f a
positively homogeneous function in Ker(res). By Lemma 5

d
res(f)zOzfzzaifi

i=1

for some homogeneous functions fi,---, f4. By assumption, S being admissible, the f;’s can be
chosen such that f; x lies in S; we are therefore left to define A(9;f; x) for any homogeneous
function f; such that f; x lies in S. Since it should satisfy Stokes’ property, the linear form A on
0; [ x reads:

A@ifix) = —=Afi 0ix) = / fi Oix. (3.27)

The second equality follows from the fact that 0;x is smoothing and that A coincides with ordinary
integration on smoothing symbols. To make sure that equation (3.27) defines A on S N Ker(res)
consistently, we observe that this definition is independent of the choice of primitive f; + ¢ of
gi := 0;f;. Indeed, applying (2.15) to X = x e; we have

/ Oix d§ = X {ei,v) dus = / (es,v)dps =0,
B(0,1) Sd—1 Sd—1

since the outward pointing normal vector v to S~! points in opposite directions at diametrically
situated points of the sphere.
Applying these constructions to each homogeneous function o,_; with Re(a) — j > —d defines A

on S by
d
== / Ta—ji 1X+/ T(N)-:
IRd

i=1
The fact that \ satisfies Stokes’ property follows from its very construction.

N-1

=0

<.
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3. Covariance: Due to the covariance property of the ordinary integration non L' functions and
hence on C'S<;4(IR?), in order to check the covariance of ), it suffices to check it on symbols
fx € § with f positively homogeneous. For any invertible matrix C' € Glg(IR) and for any
homogeneous function f = Zle 0; fi such that f x lies in S, we have:

A(feC)(xe0C))

i=1 j=1
d
S 3 biA(fi 0 CO;(x 0 0))
i=1 j=1
d d d
S St [ fieApec
=1 j=1 k=1
d d
SCCEID 3 DL WA

i=1 j=1
d

et 1Y [ o0
-1/ R

d
[detC| ™" > A(@ifi x)

i=1
|detC|™H A(f x)

where we have set C' = (c¢;;) and C~1 = (b;;) and used the covariance of the restriction of A
to smoothing symbols, which by assumption coincides with ordinary integration. Applying this
to each homogeneous component o,_; of degree > —d of a symbol o € S of order a yields the

result.

O

Applying Theorem 2 to the examples exhibited at the beginning of the paragraph leads to the fol-

lowing statement.

Corollary 3 Ordinary integration canonically extends to a linear form JCIRd on the subsets CSF% IRd),
CSeY(RY) if d is odd, CS(IRY) if d is even, which satisfies Stokes’ property.
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4 The cut-off (or Hadamard finite part) integral

The cut-off (or Hadamard finite part) integral provides a realisation of the canonical integral on non
integer order symbols. The obstruction which prevents it from extending to a linear form with Stokes’
property on the whole algebra of symbols is measured in terms of a noncommutative residue.

4.1 The cut-off integral

Let us first recall a useful technical lemma.

Lemma 7 Given a symbol o € CS¢ (RY), the map R — fB(O R) o(§)d& has an asymptotic expansion
as R — oo of the form (with the notations of (2.11)):

= Ro—itd 1
[ e@icrnmano s Y T [ @acviopk [ o a2
B(0,R) i=0.agrdzo ¢TI + l€]=1 gd—1

for some scalar ag(o) corresponding to the finite part as R — oo.

Proof: By (2.11), we write 0 = Z;V:Bl oa—j(&) x(§) + o(ny with the order of o(yy decreasing with NV,

we have

/ o(€) de :/ 0(€)x(€)d§+/ o(€) de
B(0,R) B(0,1) B(0,R)—B(0,1)

/| ERGROES NZ_:; /

oa—j(§)d§ +/ oy (€) d§.

(0,R)—B(0,1) B(0,R)—B(0,1)

We only need to analyse the second integral since the other two converge as R tends to infinity provided
N is chosen large enough. Each of the terms fB(O R)—B(0,1) Ta—j (&) d & reads:

R
Og—j pa—itd=1 g. O
/B(O,R)B(O,l) 16 de </1 d ) </|£|—1 a(§)d§>

Ro—it+d _ 1
L (/an_j@)ds) it a—jt+d#0

a—j+d

log R (/Sdlaaj(ﬁ)dg) if a—j+d=0,

giving rise to the asymptotic behaviour described in the lemma. O

The finite part o — ag(o) defines a linear form which we call the cut-off integral of o.

Definition 7 We call cut-off reqularised integral the linear form
][ . CS.(RY) — R
R
oo o [ o)
B(0,R)

where we have set:

for e /B IRGIOE /B IRCRGE / oo (€) dé

Re—B(0,1)
N-1

1
-2 m(/ﬁ_laa-j@)ds), (4.29)

a—j+d#0, =0
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independently of N provided it is chosen large enough.
With these notations the asymptotic expansion (4.28) reads:

[ RGII. ]lmd n

The cut-off integral extends the ordinary integral since

oo

Rafjer -1

P /|§|1 04—j(§) d& + log Rres(o). (4.30)

j=0,a—j+dz#0

][ o) de= [ o(e)de Vo e CSZTURY.
Rd IRd

Example 8 The cut-off reqularised integral vanishes on polynomials; indeed for any polynomial Q(&) =
ZIQKM ca &Y in d variables, we have

e S ca / € de o (fp . / ra'”-ldr) / € de
r Z B Z f 0 B(0,1)

lal<M (0.R) la|<M

R|a\+d
E PR > Ca/ &
< f=lal +d B(0,1)

laf <M
= 0.

Example 9 The cut-off reqularised integral of the symbol & — on R* vanishes:

1
€7 +1

1 R 7‘3
][134 W = fpp_ </0 2 dr) Vol (5’3)
</0Ruj_1du> Vol (5%)
" 1
(fp’%“/o (1 - u+1> du> Vol (S?)

fpr_oo (R* —log(1+ R*) +log1) Vol (S?)

|
N |
<)
=
1
8

Ol ~ N

An alternative but rather lengthy computation using (4.29) and the asymptotic expansion (2.12) of the
symbol as |£] tends to infinity, yields the same result

1 1 1 1
e = [ e (g -ttt ) a5 [ jetas
]ZIR“ €12 + 1 Bao,) [§12 + 1 R4—Bs0,1) \J§[F+1 2 Jsu0,1)
_ /1 r g +/OO - L) dr - L) veus?)
= 21 r ! R r4+r T 5
1 fes)
U 1 1
d —_ dr — = 1(53
/Ou—i—l u+/1 r(r2+1) " 2) Vol(S7)
1 [e%s)
1 1 1 1
1— du + = . _du— =) Vol(s?
/0( a1 “+2/1 w(wtr1) ™ 2> vel()
1 [e%s)
1 1 1 1 1
1- du + = - du — = | Vol($®
/0( it “+2/1 (u u—i—l) “ 2)V°(S)
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Example 10 For k€ IN — {0}

: d€ = i " du | Vol (3
fwwg_ip%w/omu ol (57)

1 (w+1)~%  (u+ 1)’“}R .

2 °F —k k-1 |, ()
1 (R+1)7k  (R+1)7k1t 3
= 3Pros —k el k(k+1) Vol (57)

™

2k(k+ 1) (57) = 2k(k+1)

by (1.5) whereas when the order of the symbol is minus the dimension (this corresponds to a logarithmic
divergence in the physics terminology),we have

1 1 oo
fo eI = 5lPn </ <u+1>ad“> Vol (57)

1 S| B
= SR </0 mdu—/o mdu) Vol (%)

1 1

= —Vol($%) = —2n2

4.2 An explicit realisation of the canonical integral on non integer order
symbols

Theorem 3 Given a symbol o in CS...( ]Rd) we have

0o (€) d€ = res(& — x(€) 0 (€) & €]72), (4.31)

R4

independently of the choice of smooth cut-off function x which vanishes in a neighborhood of zero and
is one outside the unit ball.
In particular, the cut-off regularised integral verifies Stokes’ property on C'SF( ]Rd), where it coincides
with the canonical integral.

Proof: We first observe that CS#(IR?) is an admissible set. By Theorem 2, since the cut-off integral
coincides with the usual integral on smoothing symbols, it suffices to show that it vanishes on partial
derivatives in order to identify it with the canonical integral. By (2.15) for any index i in {1,---,d}
and any symbol o € C'S? (IR?) we have

Do (&) dg

fpr e / Dro(€) de
R B(0,R)

= fpp_ R? / Dio(RE) de
B(0,1)

— fpp RO / Oi(o(RE)) dt
B(0,1)

= pr—wORdil Ldl U(Rg) <eia V> d5§
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Hence

2

dio(€) d§ fpp oo R /Sd1 Oa—j(RE) (e, v) dsé + fpp_ R /Sd1 o) (RE) (e, v) ds§

R4

<
Il
o

2

= X B [ o (9 ) dse

<.
(=)

= g—jtd—1 /Sdilaa—j(f) (ei,v)ydsé

= /SLF1 o—d+1(§) & dsé
= res(&— x(&)o(§)& |§|_2)7

independently of the choice of smooth cut-off funciton y which vanishes in a neighborhood of zero and

is one outside the unit ball.
Here as before dgé = (2+)dd5§ and dgé = Zle(—l)d_l Edéy N NdEi_1 dEjvq -+ - dEg s the induced

measure on the unit sphere S9! and n = (%, e z—gd) the outward pointing normal vector at £. In

particular, f.. 9;0(€) d§ = 0 if the order a of ¢ is non integer. O

Corollary 4 The cut-off integral does not obey Stokes’ property on CS..( IRd).

Proof: Take o'(£) = x(¢) éﬁ where as before x is a smooth cut-off function which is 1 outside the
unit ball and vanishes in a neighborhood of zero. Then

d d—1
S [ e aase=d [ s = S 2o
1=1

so that Z?Zl JCIRd 0;0" # 0 which shows that JCIRd does not fulfill Stokes’ property on CS. ( IRd). O
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5 'Translation invariant linear forms on symbols

We first show that the canonical integral on non integer order symbols is translation invariant. We then
prove that the canonical integral is the unique translation invariant linear extension of the ordinary
integration map to admissible sets of classical symbols in Ker(res). Similarly, we construct a unique Z°-
translation invariant linear extension to admissible sets of classical symbols in Ker(res) of the ordinary
discrete summation on L' symbols.

5.1 The action of the translation group on the cut-off integral
The following lemma shows that IR? acts via translations on the algebra C Se.cl IRd) of classical symbols.

Lemma 8 Given a symbol o in CS¢ (IR?), for any n € R?, the translated symbol tyo = o(-+mn)
lies in CS (IRY).

Proof:

1. We first show that {}0 is a symbol of order a i.e. that for any 7 in R? and for any multiindex
«, there is a constant C,(n) such that

07 0(& + )| < Ca(m(€)@Iol ve e RY. (5.32)
Since o is a symbol of order a, we know there exists a constant C,, such that
|02(¢+n)| < Cals+mTe@el vee RY

Since lim¢| o0 % =1, there are constants C’(n) and C”(n) such that

C'(m)(€) < (E4+n) < C"(n)(€),

hence the existence of a constant d,(n) such that
(€ +met@=lel < 9, () ()Rl e,
The constant Cy (1) := 0 (1) Cy thus satisfies (5.32).

2. We now show that ¢} o is classical. Since o is classical, we have

o(&+n) ~ Zoa i) x(E+n),

where as before y is a smooth function which vanishes in a neighborhood of zero and is identically
one outside the unit ball. Since & — x(x +7) — x(£) has compact support, it follows that

o(§+mn)~ Zan§+77 x(€)-

For any non negative integer j the following Taylor expansion at n = 0:

B
tnoa—j( Z (’“)BUG i ﬁ' +N Z (/ u)™~ 1860@ (1 —u)§+u77)du) %
|B|<N—1 |B|=N '
shows that
e B
10(6) ~ Y (150)as(O)X(E),  where (10)ui(€) = D 0w (O,
i=0 J+Bl=i

which is positively homogeneous of degree a — 1.
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O
The following proposition shows that the cut-off integral is not invariant under the action of the
translation group.

Proposition 10 For any o in CS’C,C,(]Rd), the difference

Yo — o= B ﬁ
][]Rf"" ]Zle =2 (mdaﬁ Wﬁ) 7

I81<[Re(a)]+d

is a polynomial in n. If o lies in CSFZ(RY), then

tro = .
e

Proof: A Taylor expansion at n = 0 yields:

tro(@)= > 0 6' +N >

[BI<SN-1 |Bl=N

(/ wN19le ((1—u)§+un)du> %ﬁ' (5.33)

If o has order a, the map & — o((1—u){+un) defines a family of symbols of order a—j parametrised by u
in [0, 1[ which becomes a constant function in £ for u = 1. The map £ — fol (1—u)N Lo ((1—u)é+un) du
therefore defines a symbol of same order a. For large enough |§|, the symbol & — 8?0((1 — )€ + un)

lies in CSS-%(IR?) and hence so does £ — fol u)N - 13ﬁ ((1 — u)é + un) du. On CSSo4(IR?) the
canonical integral coincides with the ordinary integral so that for |B] > Re(a) + d we have

/}Rd (/01(1 —u)N o (1 — u)€ + un) du) de = /01(1 T R (/R 0o ((1 —u)é +un) dg) du.

Hence by linearity of the canonical integral and for N = [Re(a)] +d + 1,

fmdt;o@)dg:mgl( RS>

|Bl=N

Since the ordinary integral on C'S=;"(IR?) vanishes on partial derivatives, it follows that

][ o€ de—f  ale)ae
Rd

0<|B|<N— 1<

-5 ()5

0<|m<N 1

|Bl=N

If o has non integer order, then the cut-off integral which coincides with the canonical integral on non
integer order vanishes on the derivatives Bg o so that

]l to@yde =4 o(e)de.
R4 R4
O

5.2 Translation invariance versus closedness

Let S € CS..o(IR?) be a subset stable under IR’ (resp. Z-) translations i.e:

cES=toeS Y¢ R (respZ?).
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Definition 8 A linear form \ : S — C is said to be R (resp. Z?) -translation invariant whenever it
is invariant under the action of the translation group:

thbA=A Vne R?  (resp. VneZ%),

where

* L d
tyA(o) == Atyo) Vo € OScc(RY).
The following proposition relates IRY- translation invariance and Stokes’ property.

Proposition 11 With the notations of the above definition, let A : S — C be a linear form which
restricts on SN CS<~4(RY) to a translation invariant linear form.

1. The linear form X is R%-translation invariant if and only if it vanishes on partial derivatives.

2. If the linear form A is % -translation invariant, then its value on derivatives NdPa), B+#0,0¢
CS#Z(RY) is uniquely determined by its restriction to S N CS<~¢(IR?).

Proof: Let p denote the restriction of A to S N CS<_d(]Rd), which by assumption is translation
invariant.

1. Using the Taylor expansion (5.33) , we have

« 8 77ﬁ 775 ! N 3
tAo) =Mo) <= Y MA@ a)E +N > 5 /0 (1=t)N p (8% (- +tn)) dt = 0.
0<|BI<N |B|=N+1

Differentiating this identity with respect to the coordinates of n at 7 = 0 yields the first part of
the assertion.

2. Let A1 and o be two Z%-translation invariant linear forms on C'S L ( ]Rd) satisfying the assump-
tions of the theorem with the same restriction p. The Taylor formula (5.33) applied to o € S
yields by linearity of A; and for N chosen large enough:

B sl
Ai (tyo) = Z Ai (3ﬁa)%+N Z % /0 (1=t)N p (0°a(-+tn)) dt,

[B<N |8|=N+1

so that 3 A1(0) — X0 5<n A (0%0) "ﬁ—ﬁj = trA2(0) = X 5<n A2 (0P0) "ﬁ—l; vn € Z¢ since A and

A2 both coincide with p on SN CSS;d(]I{d). Since t;A; = A; for any n € Z°, this implies that

the polynomial expressions >, 5 <y A (0%0) %—f and 35, 5<n A2 (0%0) "ﬁ—ﬂ! in the coordinates
of 7 coincide for all € Z* and hence that their coefficients coincide A;(0%0) = Xo(9”¢) when
0 < |B] < N. Since this holds for any large enough N, we conclude that A\;(9°0) = A\2(9%0)
when 3 # 0. Tt follows that the value of A on derivatives A(9°0), B #0, o € A is uniquely

determined by the restriction p to C'S<;4(IRY).

O
The following theorem then directly follows from Theorem 1.

Theorem 4 Any translation invariant linear form on C'Se ( IRd) which vanishes on smoothing symbols
and fulfills Stokes’ property is proportional to the noncommutative residue.

The following theorem then directly follows from Theorem 2.

Theorem 5 Let
CS-Z(R%) c A C Ker(res)

be an admissible set.

The ordinary integration map fIRd uniquely extends to a translation invariant linear form on S, which
coincides with the canonical integral JCIRd introduced in Theorem 2. Fquivalently, any translation
invariant linear form on A which fulfills Stokes’ property is proportional to the canonical integral.
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A similar statement gives the uniqueness (but not the existence) of Z“-translation invariant linear
extensions of the discrete summation on L'-symbols to admissible sets.

Theorem 6 Let
CS (R C A C Ker(res)

be an admissible set.
Whenever the ordinary discrete summation map y a on L*-classical symbols extends to aZL® -translation
imwvariant linear form on S, this extension is unique. We call it the canonical sum and denote it by

Y-

Proof: Let A be a Z“% translation invariant linear form on S which extends the ordinary discrete
summation on L!'-symbols. By Proposition 8, a symbol o in Ker(res), can be written

d
o= Z@iﬁ- + 7
i=1

as a finite sum of derivatives of symbols 7; in S and a smoothing symbol 7. By assumption, A coincides
with the ordinary summation map on smoothing symbols, so that

d

Ao) = Z A0;T) + ZT.
Zd

i=1

By Proposition 11, A\ being Z%-translation invariant, its value on partial derivatives is entirely deter-
mined by its restriction to L'-symbols also given by the ordinary summation map, so that A(co) is
entirely determined by its restriction > 4 to L'-symbols. This determines A uniquely. O

A large part of the next section is dedicated to the construction of the cut-off discrete sum on
CS#(RY).

29



6 The cut-off discrete (or Hadamard finite part) sum on non
integer order symbols

We provide an explicit realisatton of the canonical sum on non integer order symbols, namely of the
unique linear extension of the ordinary discrete sum on L' symbols which fulfills Stokes’ property.

6.1 The classical Euler-MacLaurin formula

The classical Euler-MacLaurin formula which relates a sum to an integral, involves the Bernoulli
numbers defined by the following Taylor expansion at ¢t = 0:

t =t
= B, —. .34
et —1 1;) n! (6.34)

t
e2+e ? is an even function, By = —% and Bapy1 = 0 for any positive integer k.
e2 —e 2

: t t _ t
Slnceﬁ—Fi—Q

Remark 4 In view of a generalisation to higher dimensions, it is useful to observe that ett—,l = Td(—¢)

where Td(t) := L= s the Todd function so that

> VA T 12k
Td(t) = -1)"B, — == Bop ——. 6.35
TR RS S 059
n=0 k=0
Here are some values of the Bernoulli numbers see e.g. [Cal: Bp =1, B; = —%; By = %, By =

1.
500 Do = 427 Bs = 307310 66
Bernoulli polynomials are defined similarly by:

t tx
Z Bl e_ - (6.36)

so that in particular, B, (0) = B,. This initial condition combined with the differential equations
obtained from differentiating (6.36) with respect to =

0. Br(x) =n Bp_1(x), (6.37)

completely determine the Bernoulli polynomials. Indeed, we have:

By(x) = Zn: (Z) By 2", (6.38)

k=0

so that for example By(z) = —3 + .
Furthermore, 3°° (B, (1) — B,(0)) & = L& — =1 so that

n! et —

Bi(1)=B1(0)+1 and B,(1)=B,(0) Vn>2.

It is useful to observe that since B, (1) = B,, for any n > 2, setting z = 1 we have

n n

B,=Y" <:> Box=Y. <:> By Vn>2. (6.39)

k=0 k=0

Let us recall the Euler-MacLaurin formula (see e.g. [Ha]).

Proposition 12 For any function f in C°(1R) and any two integers M < N

N N K
> s = IO [7 sy e+ 30028 (500w = s )
n=M 1 k=2

(~K-

N_
+ T/M Bx (z) f5)(z) dx (6.40)

with By(z) = By (z — [z]) and where K is any positive integer larger than 1.
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Remark 5 o As it will become clear from the proof, the lower bound 1 in the discrete sum on the
l.h.s. can be replaced by any other integer, in which case the lower bound of the integral on the
r.h.s. should also be replaced by this integer.

e By(z) = Bi(z — j) is smooth on any interval [, + 1[,j € ZZ.
e The index K can be chosen arbitrarily large.

Proof of the Proposition: Let us set for convenience:

K _1\K-1 N __
Siclr) = DR (£ ) — 000 s eln) = S [ B 10 @)

k=2 M

We first observe that
Sk(f) + Ik (f) = Sk+1(f) + Ix+1(f)

which shows that K can be chosen arbitrarily large. Indeed, using (6.37) as well as Bj11(1) = Bg4+1(0)
we have by integration by parts

K+1 N
Sl lenlh) = 3G (17000 - 0n) s e [ B 1 @ e
K+1 B B B (_1)K N—-1 .41 '
= kzﬂ(—l)k?f (f(k D) — 1)(1))+mj_ZM/j Bicia(x — ) f5) (2) de
K41 B . . (—1)K-1 N-1 i+l
= U (O -4 an) S 5 [ Beta i) 1
(-DF (K) (; (K)
b 2 (B G 1) = B )£ 90)]
=M
= B -1 1 G2
= g (P - s an) + | Bra) 99@) da
= Sk +Ix(f).
Tterating this as K decreases and using (6.37) we find:
Sk(f)+1x(f) = S2(f)+12(f)
. By, / [ e
= FUW -0 -3 [ T 0@ i
N
= RW) =00+ [ B @) e -5 Bl @),
By / / N / L= / B, 4
= U =)+ [ B @) de— 5 (FW) £06) - T £'(1)
N
= DW= )+ [ B F@)do - 2 () - £O)
M
N
- [ B @
and hence
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N—-1
SN+ 1) = —2() -1+ 3 [ @) ) da
=M J
N-1
= U - z/J e dﬁz v ) FPH

- —%(f( /f d:c—I—ij—i—l

- —l(f(N)—f(M))—/ o e+ 1) -
2 M =1

/f d:c—l—Zf

=M

Il
|
|
CZ

which proves the required formula. O

When f is polynomial of degree D, the Euler-MacLaurin formula reduces to

D+1

Zf(n)zf(i /f d:c—l—z

kBk (f(k 1)( ) — f(k—l)(M)), (6.41)

6.2 The Euler-MacLaurin formula extended to symbols
Let f € C°(IR?), for any positive integer N we now want to compare the discrete sum
Pu(f):= Y.  f)
ne€ZNC(0,N)

on integer points of the hypercube C(0, N) := [~ N, N]¢ with the integral

Pu(f) = / GEE

over the hypercube. The Euler MacLaurin formula did the job when d = 1; we need a generalised
Euler MacLaurin formula to higher dimensions. We only quote the results in higher dimensions without
proofs, indicating some references where proofs can be found.

When f(£) = ZI&\SD Co &1 - &7 is polynomial of degree D in the z;’s, then by the Euler-MacLaurin

formula for polynomials (6.41) we have:

P - Y all Y

la|<D 1=1n=—N

Z Ca H<—QZ+N% +/N % dx

la|<D  i=1 N
D+1 k: Bk ki1 N
F DN (el D VTR N ) ()

This can be written in a more compact form at the cost of introducing further notations borrowed
from [GSW] which generalise the Taylor expansion (6.35) at zero to higher dimensions:

1—eéi

Todd (£) := ﬁ S _ > %xa Ve € R?
1=1 [e%
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for some constants B, and where we have set a! := aq!--- ay!.
The Khovanskii-Pukhlikov formula [KP] relates the discrete sum with the integral by:

Py (f) = P(f) = ((Todd(@n) = Id) Pu(f)(R) ) [n=o,

where we have set

Pu(r)(b)= [ o(€)de.

[7N7h7;,N+hi] NZ

i=1
The Khovanskii-Pukhlikov formula was generalised to classical symbols in [GSW] (formula (15), see

also [AW], [KSW1] and [KSW2] for previous results along these lines) in which case the formula is not
exact anymore but only holds asymptotically.

Proposition 13 [GSW] Given a symbol o € CS¢ .(RY) with complex order a,
Pn(0) — Pn(0) ~N—o (Todd(dn) — Id) Py (0)(h)|n=0 + C(0).

More precisely, there are polynomials MUl j € IN on R such that

Py (o) — Px(o) = ((Mb'l () — .rd) PN(U)(h)) RN (6.43)
where
} la|=dj
Ri(o)(N) = S (~1)7 /C S (€070 () de
P PN Jal=j

tends to C(o) as N — o0.The Cp, N are convex polytopes growing with N and ¢£7j bounded piecewise
smooth periodic functions as described in [KSW2] and [AW].

6.3 The cut-off discrete sum on Z*

Combining the cut-off regularised integral built in the previous chapter with the Euler-MacLaurin-
Khovanskii-Puklikov formula for classical symbols, we build a cut-off regularised discrete sum on
CS..o(IR?) which provides a realisation of the canonical discrete sum on C'S£Z (IR?), which by Theorem
6 is uniquely determined whenever it exists.

Proposition 14 Let o € CS¢ .(R?) for some complex number a. The map R — f[—R R (&) dE has
the same type of asymptotic expansion as the map R — fB(OR) (&) d¢ as R tends to oo. The constant

term fpp_, o f[_R R} o (&) d€ in its asymptotic expansion relates to the cut-off reqularised integral finite
part fpa0(8) d§ =fpr_. f—B(O’R) o (&) d¢ as follows

o(€)de + / o_a(§)d¢ Yo € CS..(RY), (6.44)

R C(0,1)©B(0,1)

o | olE)dE=

where we have set C(0,R) = [-R,R]* and A© B := (A— (AN B))U (B — (AN B)) the symmetric
difference. Consequently,

fpr oo / o€y de={ o€)de Vo e CST(RY.
[—R,R]4 R4

Remark 6 A similar statement holds [Pa6] replacing [~ R, R]? by any d-dimensional expanded convex
polytope R A; here we have A = [—1,1]%. Changing the polytope a priori changes the value of the finite
part.
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Proof: Writing o = Z;\Qol 0a—j + o(n) asin (2.11), for R chosen large enough, we can estimate the
difference:

/ o(€) dé — / o(€) dé
C(0,R) B(0,R)

N—1

- / Curs (€) de + / o) (€) dé
=0 C(O,R)@B(O,R) C(O,R)@B(O,R)
N—1

Cary(€)dE + / o) (€) d. (6.45)

— /C(O,R)eB(o,R) C(0,R)OB(0,R)

J
Since oy is a symbol of order a — N we have:

Re(a)—N

o (O] <CA+¢?) 2

for some constant C. Hence, for large enough N

/ oo (€)del < C(1+R>)™ 7 Vol (C(0, R) — (C(0,R) N B(0, R)))
C(0,R)—(C(0,R)NB(0,R))
< CRY1+R)™F Vol (C(0,1))
Re(a)4+d—N
< C(A+R»)™ = Vol(C(0,1)).

Using once more the fact that oy is a symbol of order a — N combined with the equivalence of the
supremum and the Euclidean norms we also have:

loany ()] < C7 (1 + €] sup) RE@—N

for some constant C’ and

/ oo () de] < C'(1+dR)R@-NVol (B(0, R) — (C(0, R) N B(0, R)))
B(0,R)—(C(0,R)NB(0,R))

< C'RY(1+ R)R@=Nyol(B(0,1))

< O (14 R)Re@H=Nyol (B(0,1)).

Consequently, we can choose N sufficiently large so that

/ oy (€) d€ = O((1 + R)Re(@)Fd=N)y,
C(0,R)&B(0,R)

This settles the case of integrals involving the remainder term o(y). As for integrals of homogeneous
symbols fC(O,R)@B(O,R) 0q—;(§) d€, we have

/ Ca_ i (€)de = / Ga_j(Ri) R dy = R+ / Ga_y(n) dn,
C(O,R)@B(O,R) C(O,l)@B(O,l) C(O,l)@B(O,l)

which shows they are homogeneous of degree a — j + d.
Combining these results shows that R — fC(o R)OB(O,R) o (&) d¢ defines a classical symbol of order a+d
with constant term given by

fpr e / o(€) de = / o_aln) di.
C(0,R)8B(0,R) €(0,1)6B(0,1)

Thus the map R +— fc(o R) o(€) d¢ by (6.45) has the same type of asymptotic expansion as R — oo as

fB(O)R) o (&) d¢ and its finite part differs from fpp_, fB(QR) o(&)dE by fpp_, o fC(O,R)@B(O,R) o(€)dé =
fc(o,l)eB(o,l) o—4(n) dn which vanishes when o has non integer order. O
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6.4 A realisation of the canonical discrete sum on non integer order symbols
On the grounds of the above proposition, given a symbol o € C'S. ( Il?{d)7 the map
N — Z o (1)
REZLINC(0,N)

has an asymptotic expansion as N — oo of type (4.28). The constant term fpy_, o > zezin—n, a1 0 (7)
in the expansion gives rise to a linear form which extends the ordinary discrete summation map » ;4

on CSS7%(IRY) as a result of the Euler-MacLaurin/ Khovanskii-Pukhlikov formula for symbols and
which is defined as follows.

Definition 9 We call the linear form defined by

37 CSee(RY) — C
/4

o — oye Z o (1)

REZIN[—N,N]d

the cut-off reqularised sum of o. By the Kohvanskii-Pukhlikov formula, for any o in CS’C,C(]Rd) we
have:

ZO’—J[ o =1Py_ 0o ((M[j](ah)—fd)/ / 0’> + C(o).
7. R4 —N—h1<z1<N+hy —N—-hg<xq<N+hqg

e (6.46)

Proposition 15 For a polynomial function P in d-variables,
> P =P(0).
Ed

The cut-off reqularised sum is not translation invariant on C'Se q( IRd).

Proof: By (6.42) applied to f = P we have

> f=1tonoaPN(f) = co = f(0)
Zd

since only the constant terms survive in the finite part procedure as N — oo. Thus }=,. P = P(0),
from which it follows that >, is not translation invariant. Indeed, for any n € Z%, the function
tyP = P(-+n) is again a polynomial in d variables so that 3,4 P(- +7) = P(n) which in general does
not coincide with P(0) =>4 P. O

The cut-off regularised sum actually provides an explicit construction of the canonical discrete sum
>=za on non integer order classical symbols introduced in Theorem 6.

Theorem 7 The cut-off reqularised sum extends the ordinary discrete sum to aZL% -translation invari-
ant linear form on CS#(IR?Y) and we have:

Soimtoy . 3 o =] o+Cl) VoeCSERY, (6.47)
zd FEZINC(0,N) R

The cut-off reqularised sum therefore provides a realisation of the canonical discrete sum on non integer
order symbols. Moreover, the map o — C(o) is Z-translation invariant on CSFZ(RY) i.e.

C(t;o) =C(o) VneZ®, VoeCSPT(RY).
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Proof: By Proposition 13, the asymptotic behaviour of the map N — Py(0) = REZANC(0,N) o (1)
follows from that of the map N + Py(o) = |, C(0,N) o (&) d¢ since the difference, which involves deriva-

tives of integrals f7N7h1<zl<N+h1 e f—N—hd<md<N+hd o (&) d¢ in the h;’s, can be shown to be of that
type (with no logarithmic terms) [Pa6]. Taking finite parts as N — oo on either side of (6.43) yields
(6.46).

Since Y5 acoincides with the ordinary summation map o — 3,4 0(7) on CS<;4(IR?) which is ad-
missible, it suffices to show that it is Z*-translation invariant on C'S#(IR?) in order to view it as

the unique linear form on C’S%(IRCI) with these properties which we called the canonical sum on
CS#(IRY). We therefore need to check that
Py oo Y. Lol =fpoy o > o) VoeCSH(RY) vnez.

C(0,N)rzs C(0,N)rzZ?

To prove translation invariance, we observe that ZC(O Nzl tro(i) = C(0,N) o(n) is the sum
; -, C(0,

over integer points of a polytope corresponding to the translated hypercube tinC’(O, N). Using the
Euler-MacLaurin/ Khovanskii-Pukhlikov applied to the polytope tr,C (0, N), we can relate this sum
with the integral j; C(0,N) o(&) dg, which for non integer order symbols, can be shown to have the

-, Cl0,

same finite part as N — oo as fc(o N) o(€) d¢. On the other hand, using again the fact that o has non
integer order, we check that

fox—odi (Pon(t0)0) = on—df (Pvy(0)(B) =0,

[n=0

hence,

Zt*_na = Pyoeo Z o
Zd

Znts, C(0,N)

N / o(€) dé + C(o)
t* C(0,N)

Y / o(€) dt + C(o)
C(0,N)

— { o©de+C)
le
Zd

Since both }=,4 and JCIRd are invariant under translation by € Z¢ on non integer order symbols, so
is the map o — C(0), consequently

C(tjo) =Clo) Vo€ CS#(R) VneZ’
which shows (6.47). O

Remark 7 The canonical sum on non integer order symbols can also be derived from finite parts
PN oo 2N Arma O Of sums over integer points in expanded polytopes N A independently of the choice of
the convez polytope A. Whereas for a general symbol o € CSe.o(IRY) the expression fpy >N Az 0(7)
depends on the choice of the polytope A, it does not when o is of non integer order.

Example 11 Cut-off regularised sums vanish on polynomials. Indeed, let QQ be a polynomial in d
variables, then (6.46) applied to polynomials reads

ZQ—][ Q=fpy_. ((Mm(ah)—fd)/ / Q) 7
A IR —N—h1<z1<N+hy —N—hg<xy<N+hg

|h:0

since C(0) = 0. The derivatives which arise from ((M[j] (On) — Id) f7N7h1<zl<N+hl e f*N*hd<md<N+hd Q)

give rise to mon constant monomials in N and hence do not contribute to the finite part. It follows
that Y= Q = f—le Q, vanishes since the cut-off integral vanishes on polynomials.

[n=0
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7 An alternative characterisation of the noncommutative residue

Using the canonical integral on non integer order symbols, we classify linear forms on the algebra of
symbols which fulfill Sotkes’ property on non integer order symbols. This leads to a characterisation
of the noncommutative residue as the unique (up to a multiplicative factor) linear form on the algebra
of classical symbols, which fulfills Stokes’ property.

7.1 Canonical integrals of holomorphic symbols

The notion of holomorphic family of classical pseudodifferential symbols and operators was first intro-
duced by Guillemin in [Gul] and extensively used by Kontsevich and Vishik in [KV]. The idea is to
embed a symbol ¢ in a family z — o(z) depending holomorphically on a complex parameter z.

A family {f(2)}.ew in a topological vector space S which is parametrised by a complex domain (2,
is holomorphic at zgp € Q if the corresponding function f : Q@ — S admits a Taylor expansion in a
neighborhood N, of zg

oo

f(z) = (k) (z — z0)"

)= fP(0) = (7.48)
k=0

which is convergent, uniformly on compact subsets of N,,, with respect to the topology on S. The

vector space of functions we consider here is C®(U x R%) ® End(V) equipped with the uniform

convergence of all derivatives on compact subsets.

A family o(z) of classical symbols on R parametrised by a domain €2 is holomorphic at point zy € 2
if:

1. o(z) is holomorphic at zy as a function of z with values in C>(IR%) and

0(z) ~ Y 0(2)a-j € CSEE(RY), (7.49)
j=0

where the function « : 2 — C is holomorphic at zy;

2. for any integer N > 1 the remainder
N-1
U(N)(Z) = 0(2) — Z oa(z),j(z)
j=0

is holomorphic at zp as a function of z with values in C*(IR?Y) with k"™ z-derivative
o () = 0 (o) (2)) (7.50)
(N) =0 0(N) z .

a symbol on R? of order a(z) — N + € for any € > 0 locally uniformly in z, i.e the k-th derivative
0% (n)(2) satisfies a uniform estimate (2.10) in z on compact subsets in €.

If o(2) is holomorphic at every point zg € €, it is called a holomorphic family of symbols parametised
by Q. We shall also use finite sums of holomorphic families of symbols, in which case the notion of
holomorphic order does not make sense any longer; we then need to handle each holomorphic symbol in
the sum separately. We call a family o(z) of classical symbols parametrised by §2 meromorphic if there

are a finite number of complex numbers z1, - - - , zx in € corresponding to the poles of o and holomorphic
families 7 (z), - - - , 7 (2) of classical symbols parametrised by  such that o(z) = Zle 7i(2) (z—2;) 7™,
for some mq, - ,my € IN.

The following technical result is useful to recover a result by Kontsevich and Vishik to holomorphic
families of classical symbols.

Lemma 9 Let z — 7(2) be a holomorphic family of classical symbols in CS’C,C(]Rd) parametrized by
Q with holomorphic order a(z). Then the map

2= T(2)()dE

R4
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is meromorphic with at most a simple pole at points in QN a~! (% N [—d,+oo]) and at any such point
zo we have:

1
ev’;‘f)g][ 7(2)(&) dé — 7(20 §d§=—eviig<7/ Te(z)—jo (2 wd‘wg),
R ( )( ) R4 ( )( ) a(z)_a(z()) g1 () J ( )( )
1
Res., T(z d¢ = —Resg, 7/ Ta(z)—jo (% wdw),
TIRCIGL: o [ o
where jo is chosen such that o(zg) — jo = —n and where we have set evie8(f) = evy™ f(zo + -) with

evy ® the reqularised evaluator at zero.

These formulae still hold if z — 7(z) is a meromorphic family of classical symbols which is holomorphic
at the point zp.

Proof: We write 7(§) = ij:_ol X(&) Ta—j (&) + 173y (§) with N chosen large enough so that 7(y) has
order < —d. An explicit derivation of the finite part yields

][ 7(§) dg (7.51)
lR,d

N—-1 N—-1 1
= d a—i (&) dé — _ i dsw,
[rrm©ies [ vom @ jgna—wn/yf @) ds

where B(0, 1) stands for the unit ball. In particular, for the holomorphic family 7(z) of order a(z) this
yields the following identity of meromorphic maps:

VAROIGE:

N-1 N-1

= /}Rd vy (2)(€) d€ + ;0 /B(OJ) X(€) Ta(2)—5(2)(€) d€ — 2 m /SH Ta(2)—j(2) (W) dsw
N-1 N-1 1
= [ e de+ > /| o OO %= 3 ot [ e dse
m /sdfl Ta(z)—jo (2) (W) dsw, (7.52)
where jg is such that a(zp) — jo = —d.

Since the family 7(z) is holomorphic at zp, the expression

N—-1 N—-1 1
[ e ae+ > fo OO - X [ s} s

which involves integrals on compact sets B(0,1) and S9! of homogeneous components Ta(z)—j 18

holomorphic at zy and the integral over RY of a remainder term 7(n)(2), converges to its value at zo.
This holomorphic part converges to

VARCIGE:
= /}Rd () (20)(§) d§ + 1:_201/3

where we have used (7.51). The only poles of f..7(2)(§)d¢ which come from the remaining part
m Jga—1 Ta(z)—jo (2)(w) dsw arise at points z for which a(zp) = jo lies in [—d + oo[NZZ.

Ky

X({)Ta(ZO)_j(ZO)(g)dg_ Z a :

(0.1) =0 3o (20) —j+mn

/ ooy (20) (@) dsw,
gd—1

Combining this with (7.52) shows that the map z — ;. 7(2)(€) d€ is meromorphic with simple poles
in a= (Z N [—d,+o0[) N with finite part at a pole z = zy given by

it f @@= { @ ot (cotas [ s dse).
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and a simple pole at z = zg given by:

Res.,  rla@ de = e, (ot [ () dse ).

Since the last two formulae were derived from local computations at point zg, they still hold if z — 7(z)
is a meromorphic family of classical symbols which is only holomorphic at the point zp. O

7.2 The noncommutative residue as a complex residue

The following theorem recalls a result of Kontsevich and Vishik [KV] which relates the complex residue
of the cut-off integral of a holomorphic family of symbols to its noncomutative residue and yields back
a result derived in [PS] which describes the finite part of the cut-off integral of a holomorphic family
of symbols.

Theorem 8 Let z — o(z) be a holomorphic family of classical symbols in CS’C,C(]Rd) of holomorphic
order a(z) parametrized by Q.

1. The map fao(2)(§)dE is meromorphic with simple poles in QN o~ ' (Z N [—d, +00l).
2. [KV] Provided o/ (z0) # 0, then the complex residue at zo € QN o~ (Z N [—d, +oo]) is given by:

Res., (£, | o(a)(€)de) =~ res(oza) (7.53)

3. [PS] Provided o'(z0) # 0, the finite part at zo € Q differs from the cut-off reqularised integral
Fre 0(20)(€)dS by

P - o(z - res(o’(z Mresoz
ot (f o@e) ~ f @ =~ Ssresto' o)) + S res(o ), (75

re

where we havse set evid(f) = evy™ f(z0+-) as before and extended the noncomutative residue to

the possibly non classical symbol T(z0) = o' (20)® by implementing the same formula

res(7(zp)) = / T-n(20)(§) dE€.

Sd—1

Remark 8 Formula (7.54) formally follows from (7.53) applied to the family 7(z) = w since
7(z0) = 0'(20). However, the proof is not quite so straightforward since 7(z) is not a holomorphic
family of classical symbols (outside zp) bul only a linear combination of such a holomorphic family

o(z) and a constant symbol o(zp).
Proof:
1. By Lemma 9 the complex residue reads

Res:, ][Rd o(2)(§)d¢ = —Res,—o <m /Sdil Ta(2)—jo (2) (W) d‘sw>
1

= —Res,, <m /Sdl Ua(z)—jo(Z)(w)d‘sw>
_ ! /S oa(@)w) dsw

o (20)

_ _ﬁzo) I‘eSo(U(ZO))v

where we used the Taylor expansion at order zero:
(U(Z))a(z)—jo - (U(ZO)),n + O(Z — Zo).

3The asymptotic expansion of 7(20)(&) as |¢| —, co might present logarithmic terms in |€, which vanish on the unit
sphere and therefore do not explicitely arise in the following definition.
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2. Let us first observe that
1 1
a(z) = a(z0) a/(z0)(z — 20)(1 + 20‘;,((2200)) (z = 20) + 0o(z — 20))
1 1
= <1 o (z0) (z —20)+o(z — zo))

a/(20)(z — 20) B 20/ (zp)

so that

1 o (20)
fsz = — 5
a(z) — a(zo) 2 (e/(20))
Note that this vanishes if « is affine.
By Lemma 9 the finite part fp_, fra 0(2)(€) differs from {4 0(20)(€) d€ by

., o2 ©d~f  ala)e)a

= —fp,, (W /SH Ta(z)—jo (2) (W) dsw)

= —ip,, (W /SGH (0(z) — 0(2’0))04(2)7j0 (w)ds‘*f)
- 1Ip,, (W) /Sdl (0(20)) a(z0)—jo (W) dsw.

Setting 7(z) = %ZO(Z“) and using the Taylor formula at order zero around zg

(T(2) a(z)—jo = (0"(20)) _, + Oz — 20),

this yields

~—

o’ (29
1

= ey reso(7(20)) + 2 (o (20))

= T )

O

7.3 An alternative characterisation of the noncommutative residue

The following proposition characterises linear extensions to the whole algebra C'S, «( ]Rd) of the canon-

ical integral defined on non integer order symbols.

Proposition 16 Any linear form on CSe..(IR?) which satisfies Stokes’ property on CSF%(RY) is of

the form
c-][ + pres, (c,p) € C2
R4
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Proof: Let X be a linear form on CS..IRY) which restricts to a linear form on CS#%(R?) which
fulfills Stokes’ property. By Theorem 2 applied to S = CS%(]Rd), the restriction is proportional to

the canonical integral JC]Rd:
dc € (C, A‘ng@( R =c ][IRd .

We want to describe all possible linear extensions A of f—]Rd to classical symbols with integer order.
Given a symbol o € C.9%( IRd) with integer order a, we build a holomorphic family

a(2)(§) = (1 = x(£)) (&) + x(§) o (&) [¢€]~
whose order a — z avoids integers in a small neighborhood of 0. Thus, in a small neighborhood of zero
No() = ata)
R4
The remaining degree of freedom left to define A\(¢) is the choice of a regularised evaluator at z = 0.

But by Proposition 2 (here k = 1), regularised evaluators at zero are of the form evy™® + v Resg, with
v a complex number. Hence,

No) = cevg®o4 R(0)+ puRes.—o 7/ o(2)
R R4
reg
= c ][ o+ pres(o), (7.55)
le
where we have set {175 0 := ev(® o f.. R(0) and used the fact that a(z) = —z + «(0).

This holds in particular for the cut-off regularised integral A = {4, which by (3) coincides with the
canonical integral on CS#(IR?). Thus there are constants ¢’ and z’ such that

reg
]l =c ][ +p res.
R4 R4

Since . and f355 coincide with the ordinary integral on L'-symbols on which the residue vanishes,

¢’ =1 from which we infer that reg
][ = ]l — ' res.
RY R

Inserting this back in (25.268) yields the existence of constants ¢ and p such that

A=c ][ +pres
IRd

as announced. O

The lack of translation invariance of the cut-off regularised integral on CSC,C(]Rd) observed in Corol-
lory 4 combined with Proposition 16 leads to an alternative characterisation of the noncommutative
residue.

Theorem 9 Any linear form A on CSC,C(]Rd) which s translation invariant, or equivalently which
satisfies Stokes’ property, is proportional to the noncommutative residue

A=pures, peC.

Proof: We first recall from Proposition 11 that translation invariance is equivalent to satisfying Stokes’
property.

By the above theorem linear forms on C'S..(IR?) with Stokes’ property, which by definition restrict
to linear forms on C'S#%( ]Rd) with Stokes’ property, are linear combinations of the cut-off integration
map and the noncommutative residue. But by Corollary 4, in contrast to the noncommutative residue,
the cut-off integral does not satisfy Stokes’ property on CSC,C(]Rd). It follows that linear forms on
CS...(IR%) with Stokes’ property are proportional to the noncommutative residue.
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8 Holomorphic regularisation schemes

We compare different regularisation schemes and describe the discrepancies arising from regularised
integrals such as the lack of covariance and translation invariance.

8.1 Regularised integrals of symbols

Definition 10 A holomorphic regularisation scheme on CSg q( IRd) s a linear map
R:ow (z—0(2))

which sends a symbol o to a holomorphic family of symbols o(z) parametrised by z € C such that
0(0) = o of order z — a(z) with non vanishing derivative at zero o/ (0) # 0.

Example 12 Riesz reqularisations
R(o)(z)(x) = o(§) [§]7 if [¢]=1 (8.56)

and the slightly more general regularisations (which as we shall see below include dimensional regular-
isation)

R(o)(z)(x) = H(2) o (&) [§]7 if [§] =1 (8.57)

with H holomorphic such that H(0) = 1, are holomorphic regularisation schemes.

Remark 9 In the above examples
1. 0 — o(z) is not an algebra morphism since o(z) 7(z) # (o 7) (2).
2. the order a(z) = a(0) — z of o(z) is affine in z.

Definition 11 By Theorem 8, to a holomorphic reqularisation R : o — o(z) we assign a meromorphic
map z — fpa R(0)(z) with a simple pole at z = 0. Combining it with the regularised evaluator evy™®
at zero defined in (1.2) which amounts to taking the finite part fpz = 0, we build a linear form:

R
][ : CS.(RY) — C
R4
o — evg®o R(o)
R4
called the R-reqularised integral of o.

Let us introduce a regularisation scheme which we call dimensional regularisation in reference to a
similar regularisation scheme used in the physics litterature.

Definition 12 Let H(z) := % where using (1.5) we have set
d—=z
2m 2
Vol(S47771) 1= ———.
r(45%)

Let R be a regularisation of the type described in Example (8.57),
Ru(0)(2)() = (1 = x(£))a(&) + x(&§) H(z) o (&) [§]

where x is any smooth cut-off function which is identically one outside the unit ball and vanishes in a
neighborhood of 0.
For any symbol o € CS’C,C,(]Rd) we call

]([ﬁmcg (&) dg := ]Zn: o (€) de

the dimensional regularised integral of o.
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The terminology “dimensional regularisation” is justified by the following proposition which shows how
on radial symbols, dimensional regularisation amounts to “complexifying” the dimension d — d — z.

Proposition 17 For any radial symbol o(&) = f(|¢]) € CSe.c(IR?) we have

dim.reg d—z— 1
][ o(&)de = o(&)de +evy® (VOl (5 7[ fr)yrd= Zdr). (8.58)

R4 1€1<1

Proof: By definition of the dimensional regularised integral we have

dim.reg
][ (&) d¢ ][ o(§) d§ + evy™® <H(2) ][ o(§) IE]7* d§>
R l€]<1 R<—B(0,1)

o VOl(Sd 1 reg( d z )
IR ) s ar
][ o (&) de + ev reg (Vol Sd z— 1 7[ f i Zdr) |

lg1<1

O

8.2 Dimensional versus cut-off regularised integrals
The following proposition compares R-regularised integrals with the cut-off regularised integral.

Proposition 18 1. If the holomorphic regularisation R sends a symbol of order a to a symbol of
affine order a(z) = a — qz with g # 0, then

R 1
f o€~ o()dE = creslo’(0),

R4 R4

2. In particular, if R(c)(2)(§) = H(z) o (&) [&|7* if |&] > 1 is of type (8.57), then

R
0@~ o) = H'©)resto).
R? R?

3. Riesz reqularised integrals coincide with cut-off reqularised integrals.

4. In even dimensions d = 2k, the dimensional regularised integral defined by (8.58), of a radial
symbol o (&) = f(|€]) relates to its cut-off reqularised integral by

dim.reg
f . o@s—f  oyde =~ logr - Z

R4 R4

Proof: Let us set o(z) := R(0)(2).
1. By (7.54) we have at zo =0

]11: retc—f o
= o] oeret-f o

— 2reso(0'(0)) (8.59)
since a(z) = a — qz.
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O

4. Setting H(z) := r(%

2. HR(o)(2)(&) = H(2)a(&) €] 7% if wertf] > 1 is of type (8.57), then ¢ = 1 and
o'(2)(§) = H'(2) o(§) [§] 77 = 2 H(2) 0(§) log [¢[£]7* if wverté] > 1
so that res(a’(0)) = H'(0) res(o) and f—gd 0(&)dE — fpa o(€)de = H'(0) res(o).

3. Setting H =1 yields the result for Riesz regularisation.

d—

n

|

27

w
—1|

yields the result for dimensional regularisation since

[SEY

2w

~(

(VW
~—

(k)

H'(0) = —logm + T(k)

k711
=—logm—y+ ) =,
=17

where we have used (1.4).

Example 13 Let d =2k =4 and o(§) = lglzﬁ By the asymptotic expansion o(£) ~ |&]72 —[&]74- -
combined with (1.5), we compute its residue

so that

1 ; 1
res(a) = —W VOl(S ) = —W
dimreg 1 logm+vy—Y0—11 1
][ 7:][ + R S -
re [P+ Jge [P +1 8 8r2 7

since JC]R‘* Iglgﬁ vanishes by Example 9.

8.3 Discrepancies

Regularised integrals present discrepancies which can be measured in terms of the noncommutative
residue. Unlike ordinary integrals on Schwartz functions, they are not covariant and do not vanish on
derivatives.

Proposition 19 Let R be a holomorphic regularisation on CS’C,C(]Rd) which sends a symbol o in
CSeo(IRY) to a symbol of order a(z).

1. For any C € GL4(R)

R R
IdetC| f}Rd o(C &) dt — ][]Rd o(€) dé = — 'ifz(%' res (R (00 C)(0) — R'()(0) 0 C) .
2. Setting C = M yields for R of type (8.57)
R R
A4 o(NE)dE — o(&)d¢ = res (o). 8.60
A oede—F  a(dt = res (o) (3.60)
3. For any i€ {1, ---,d},
R 1 / !/
. dio(€) € = IO (R"(8i0) (0) — 0 (R’ (9) (0))) -
In particular, if R is of type (8.57) then,
R
| 0i0(§)d = res(€ = (O 6 1€) (5.61)
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4. For anyn € R?
® * ® — 1 res /! * s /!
f e o=~ (R () 0 - (Re)0).

which applied to R is of type (8.57), reads:

R R
][ tho —][ o =res (0(¢) (log|¢| —log(|t*,&l))) - (8.62)

R4

Remark 10 When R is Riesz reqularisation which corresponds to a particular case of regularisation

of type (8.57), then f»gd 0i0 = fa 00 computes the obstruction already derived in (4.31) preventing
the cut-off integral from fulfilling Stokes’ property.

Proof:

1. We first observe that for large Re(z) the cut-off integral {., R(0)(z)(§) d¢ which coincides with
an ordinary integral, is covariant. By analytic continuation we infer the following identity of
meromorphic maps,

|det0|7[ RO))(CEdE =] R(o)()() de.

R4

Hence, by (7.54) applied to the holomorphic symbol R (oo C)(2)(§) — R(0)(2)(CE) of order a(z),

we write
IdetC| fR o(C &) dt — ][R
— |detC] evgegf R(o o0 C)( - evgeg][ R(0)(2)(€)de
— |detC] evice fmd R0 0 C)(2)(€)dE — |detC] ev'® fmd R(0)()(CE)de

— letClei® (f (R0 - RO o CO) a¢)
Fist (R(o © C)(2)(©) = Ro)(2) = C(€)) e

= |detC|Resg .
_ |i‘f(tg’;| res (R (o0 C)(0) — R'(0)(0) 0 C) .

2. For C'= AT and a holomorphic regularisation

R(0)(2)(§) = H(z) o (&) [¢]7% if [¢]>1

we have

R(0 0 C)'(0)(§) = R(0)'(0) 0 C((§) = —(A§) log [¢] + o(AS) log[AE]  V|E] > 1,

so that in view of the positive homogeneity of o_4 arising in the non commutative residue we
find:

res (R (00 C)(0) — R'()(0) o C) = |\~ log |\|res(o)
from which the result follows.

3. We first observe that for large Re(z) the cut-off integral {4 R(0)(2)(§)d¢ which coincides
with an ordinary integral, satisfies Stokes’ property, i.e. J‘:IRd OiR(0)(2)(§)dé = 0 for any
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i € {1,---,d}. By analytic continuation, this holds on the whole complex plane as an equality
of meromorphic functions. Hence,

R

Do (&) dg

R4

evy® o o (Gio) () dg

_ evgeg][ b, ( (€) d + evic o ]l (R (9:0) — 0 (R (0))] (&) de

R4

— o ][ [R (9,0) — 05 (R (0))] (€) de
Rd
— Res.o ][md (R (90) (=) - 9 (R (0) ()] (&) de

1 (Do —0; (R (¢
= —mres('R (0;0) (0) = 9; (R (0) (0))) .

For a holomorphic regularisation
R(0)(2)(§) = H(2)o(§) ] if [€] =1
we have for |£] > 1
R’ (9:0) (0)(€) = 0; (R’ (0) (0)) (€) = 0(&) d; log [¢] = o(€) & ||

from which the result in this particular case follows.

]Z: to - ]ZI: o o= evic® (]l]R (R (t20) () - R(a)(z)))
- e (L R @R

- e (R () 0) - 6 R 0)0)

For a regularisation of type (8.57), we have for |£| > 1
R’ (tyo) (0)(€) = t;, (R’ (0) (0)) (§) = —a(t;€) (log |¢] —log]t;¢]) .

which is a classical symbol. Using the translation invariance of the noncommutative residue on
classical symbols, we infer that

R R
F o= o= res(o(tse) (logltie] ~Tog|¢)) = res (o€ (oge] ~ og(lt-€))-

O

Example 14 For m # 0, we compute dlm e m2+|£|2 d¢ By (8.60) we have

][dim.reg 1 ) dim.reg 1
it = m ][ —
wri  m? A [E]? R L[/ mf?

) dim.reg 1 ) 1
= m ———d{+m” logmres | ——
RrE 1+ ¢ 1+ ¢

R ][dim.rcg ;2 dg 2 1Ogm.
R4 1+ (¢
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9 Regularised discrete sums on symbols

We build linear extensions to the whole algebra C'S¢ q( IRd) of symbols, of the canonical sum Y4 on
non integer order symbols. We show that any Z‘-translation linear form on CSe.o( IRd) is proportional
to the noncommutative residue.

9.1 Regularised discrete sums on the algebra of symbols

Theorem 10 Let R(0) : z — R(0)(z) := o(z) be a holomorphic regularisation of o € CSe. (IR?)

with order a(z). The map
Z Z o(2)(7)
/A

is meromorphic with a discrete of simple poles in o~ ([—d, co[VZ) and complex residue at z = 0 given

by :
Reso (%_: a(z)(ﬁ)) _ —ﬁres(a(())). (9.63)

The constant term in the Laurent series at z =0

R
> o(if) 1= evy® gj a(z)(ﬁ)) ,

/A
called the R-reqularised discrete sum of o, reads

R

R
S (i) = ][]Rd o (€) dé + C(0), (9.64)

/A

where we have set f»ﬁd 0 (&) d€ = evq (fga 0(2)(€) d€) , with C(o) = lim, o C(o(2)).

Whenever the order of o has real part < —d (resp. is non integer), the map z +— Y=ya0(2)(7) is
holomorphic at z = 0 and converges to the ordinary sum Y . o(f) (resp. cut-off reqularised sum
Yma0()) as z — 0 so that in that case

R R
S o) =)o), <resp. > o) => a(ﬁ))

% % % 2z

Remark 11 The term C(o), which is independent of R, arises here as a difference of regularised
integrals, thus confirming a result of [GSW].

Proof: By Theorem 7, outside the set a~! ([—d, oo[(Z) we have:
= d C . 9.65
> 0(e) = £, SO e+ Clot) (9.65)

On the one hand, by results Theorem 8 we know that the map z — [ Ré o(2)(§) d¢ is meromorphic
with a discrete set of simple poles in a1 ([—d, co[(%Z) and that at zero

1
S2= d§ = ————7——~ : :
Res.ofo(e)de ST (9.66)
On the other hand, we know from [GSW] that z +— C(o(z)) is holomorphic®. Tt therefore fol-

lows from (9.65) that the map z +— >4 0(2)(7) is meromorphic with a discrete of simples poles
in ! ([~d, o[ %) and complex residue at z = 0 given by

Res.—o sz o(z)(n) = — mres(U(O)).

4Their proof can easily be generalised to our more general setup of holomorphic families with any non constant affine
order.
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Taking finite parts at z = 0 in (9.65) yields (9.64) since lim, o C(o(z2)) = C(0).

When the order of ¢ has real part < —d (resp. is non integer), the map z — fp.0(2)(€)d¢ is
holomorphic at 0 since ¢ has vanishing residue. Its limit at z = 0 coincides with the ordinary integral
Jra (&) d€ (resp. the cut-off regularised integral fp4 0(€)d€.). By (9.65) and since z — C(o(2)) is
known to be holomorphic ([GSW]), the map z — Y=,. 0(2)(7) = > 54 0(2)(7) is also holomorphic at
z = 0 and its limit reads:

R
o(ii) = 1m S o)) = [ ole)dé +Clo) = 3 o(i),
de 0% /IRd %d:
resp.
R
o(f) =lim Y o(z)(A) = o(§)d+Clo) =) o(n)
; 0 ][]Rd sz

where the last sum is an ordinary sum (resp. a cut-off regularised sum). 0O

9.2 7Z%translation invariant linear forms on symbols

The following theorem provides a classification of regularised discrete sums which are Z-translation
invariant on non integer order symbols.

Theorem 11 Linear forms on the algebra CSe.o(IRY) which are translation invariant on CS#(IRY)
are of the form:

CZ + pres, (c,pu) € C2
/A

Proof: Let A be such a linear form; its restriction to C'S#4(IR?) being translation invariant, by
Theorem 6, it is proportional to >=a.

Let 0 € CS%(IR%). A holomorphic regularisation R modifies the order of ¢ from a to a(z) which
avoids integers in a small neighborhood of 0 since /(0) # 0. Thus, for small enough non zero |z|,

Mo(2)) =) R(0)(2)-
Rd

The only degree of freedom left to define A(o) is the choice of a regularised evaluator at z = 0. But by

Proposition 2 (here k = 1), regularised evaluators at zero are of the form evy™® + p Reso, with u a real

number. Hence,

MNo) = cevy® OZ R(c) + pReso @ calR(o) (z))
. z
= ¢ ZU + pres(o).
.d

This applies to the cut-off summation map A =3=,., which by Theorem 6 restricts to aZ*-translation
invariant form on C'S,..(IR%) so that there are constants ¢ and y/ such that

R
2 = 2 +u res.
z z

Since Y= and ng both coincide with the ordinary discrete summation map on L!-symbols, we have

¢ = 1.1t follows that E;Zd =>ya —' res from which we infer the existence of constants ¢ and p such
that

R
)\:cZ—l-ures
/A

as anounced. O
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Corollary 5 AnyZ®-translation invariant linear form on CS@(]Rd) 18 proportional to the noncom-
mutative residue.

Proof: By the above theorem % translation invariant linear forms on CSe.cl ]Rd), which by definition
restrict to Z’-translation invariant linear forms on CS#%(1IR?), are linear combinations of the cut-
off discrete summation map and the noncommutative residue. Since the noncommutative residue
vanishes on partial derivatives, it is invariant under IR%-translations and is therefore Z-translation
invariant by Proposition 11. In contrast, we know from Proposition 15, that ng is not Z-translation
invariant.Hence ¢ = 0 and the result follows. O
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10 The zeta function

We introduce the zeta function and somes generalisations such as the Hurwitz and Epstein zeta
functions and derive some of its properties using techniques previously described.

10.1 Zeta and Hurwitz zeta functions

Applying Theorem 8 in the one dimensional case to o5(2)(§) = (|&]+v) % x(&) for some real number v
and some complex number s and any smooth cut-off funciton y which vanishes in a small neighborhood
of 0 and is one outside the unite interval, leads to the following statement.

Proposition 20 For any real number v, and any complex number s, the map z — >, (n+v)~5t?
is meromorphic with a simple pole at z =0 for s =1 given by 1 and with finite part

C(s;v) :=evy® Zn—i—v 5+Z>.

When v = 0, ((s;v) is called the zeta function at argument s. For positive q, ((s,q) := ((s;q — 1) is
called the Hurwitz function at argument s with parameter q.

The values at negative integers are rational provided the parameter v is rational. The result is well-
known, we follow the proof of [MP2].

Proposition 21 Let z — y(z) = 2z + uz% + O(2%) be a holomorphic function with u = @ € R.
Let A € C— {0}. The map z — o0 (n +v)* ) is holomorphic at zero for any a # —1. For any
a € IN and any non negative rational v its limit at zero:

Bat1(1
evy ® Z n+uv)"" )‘V(z)> = hmz n+v)* MG = %ﬁ—v) =((~a,1+v), (10.67)
a
=1
is a rational number. When v = 0 this yields ((—a) = —i‘_’:ll (see e.g. [Ca]). When a = —1 the

residue at 0 reads %

Proof: Applied to f(z) = (z + v)* with a € C, the classical Euler-MacLaurin formula (6.40) gives:

a a N
Z (n+v>a:(N+U) +(14wv) +/1 (z +v)* de

2
0<n<N

2K [a] [
+ ZBk k|—1 ((N+U)a—k+1_(1+v)a—k+l)+ﬂ/ Bori(2) (@ +v)* K1 dy

k=2 k! (2K + 1)!
— (N +v)ett (1+0v)2 (N 40)* + (1+0)°
= (1= Gas) g — (=) 2 + Gas1 (log(N +v) — log(1 +v))
2K [a] [
L a—k+1 a—k+1 2K+1 a—2K—1
+ kZ:sz ] L (N 40)* M = (14 p)a ket )er/ Bori1(z) (z + ) dz.  (10.68)
Let us set

+ U)a7k+1.

Ri(a) == al2re1 /NB (@) (2 + 0)* 2K Vde;  Sg(a) = ZZK:B [a)g—1
xle) =gy f, B P Sk(@) =3 By

Replacing @ in (10.68) by a — Ay(z) and taking finite parts as N — oo we have:

o0

S0 ooty _ _(LETOO (1t
 a—-M(2)+1 2

— Sk (a—M(2)) + Rg (a — My(z)). (10.69)
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Hence Res.—o > 1 (n + v)= M) =5, % Taking the finite part at 0 then yields:

= _ 1+ v)ett (1+wv)e
fp,_ a)"V(Z):—l—zSa (7—&1 log(1 - -8 R
bems (00 (1= durn) i = San log(1 +v) + 220 — Sic(a) + Ric(a),
which for a non negative integer a gives:
> LAY | Bai1(14v)
i a—X\y(z) - B (1 at+l _ _ a+1 )
zli%zo (n+v) kZ:O g ) B a+1

O

Remark 12 Whereas ((—a) is rational for non positive integers a, derivatives C(b)(—a) are not ex-
pected to be rational for non positive integers a. For example, ¢'(0) = —%log 21 [Ca]. As we saw
previously, such derivatives involve taking sums of logarithmic expressions.

O

10.2 Zeta functions associated with quadratic forms

Cut-off regularised sums )=, are useful to build meromorphic extensions of ordinary sums of holomor-
phic families of symbols; we recover this way the existence of meromorphic extensions of zeta functions
associated with quadratic forms.

To a positive definite quadratic form ¢(x1,- - ,x4) and a smooth cut-off function x which vanishes in
a small neighborhood of 0 and is identically one outside the unit euclidean ball, we assign the classical
symbol

£ 0g,5(8) == x(€) g(§) 7 € CSc.(RY). (10.70)
Theorem 12 Given any complexr number s the map
2 = Z Ogats = Z q(ﬁ)*(erz)
neZt—{0} neZ—{0}
which is holomorphic on the half plane Re(s + z) > d/2 extends to a meromorphic map
S L
ReZA—{0} REZA—{0}
with simple pole at z = 0 given by:
Res.—o— Y q(i) ") = 6y / q(w)~? dus(w)
ezt —{0} |wl=1

and constant term at z = 0:
Zy(s) =evp® =Y q(ii)"F), (10.71)
neZd—{0}

Moreover,

Zy(s) = ][]Rd 0qs+C(0q.5) -

Proof: Up to the pole which we compute separately, the result follows from Theorem 10 applied to
04,5 and Riesz regularisation R : o +— o(§) |{|~* combined with the fact that Riesz regularised integrals
coincide with ordinary cut-off regularised integrals:

e f 17 ds = f o(©)de o e OSo(w
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Now, by (9.65) the pole at z = 0 is given by the pole of {4 04.s(§)[£]7* df. We write
Resoo | x(€)al©) ¢ 7 d¢
Rd

= Resz:o/ x(€) q(§) 7 [§]7* d§ + Resz—o <prHoo/ q(§)~" €17 d€>
0<¢l<1 1

<I§I<R

R
= Res.— <pr~>oo q(rw)=* = tdt dHS(W)>
lw|=1J1

R
= Res.—g <<pr~>oo/1 p—(2542)+d—1 d?") </| ~ q(w)is duS(w)>>

R ; R7(2s+z)+d -1 oy
= Res.—o < PRHOO_(S_F—Z)_HZ> /w_l q(w) fis(w)

= d25-d (/ q(w)™? dus(w)>. (10.72)
w|=1

As announced, there is therefore a pole at z = 0 only if s = d/2 in which case the residue coincides
with f|‘*’|:1 g(w) *dus(w). O

Remark 13 For d =2 and q(z,y) = az® + bry + cy? with 4ac — b* > 0, Z,(s) yields a meromorphic
extension of Epstein’s (-function Z(m,n)eZ—{o} (am? +bmn + cn?)~* (see e.g.[CS]) which is known to
satisfy a functional equation similar to the one satisfied by the Riemann zeta function.

When a = c=1,b =0, Z,(s) provides a meromorphic extension of the zeta function of Z[i| given by

(see e.g. [Ca))
Zy(s) == Z |2|72% = Z m? 4+ n?,
z€Z[i]—{0} (m,n)eZ—{0}
When a = b = ¢ = 1, Z,(s) provides a meromorphic extension of the zeta function of Z[j] given by
(see e.g. [Ca))
Z3(s) = Z |2| 7% = Z m? 4+ mn + n?.
z€Z[j]—{0} (m,n)ezZ—{0}
Proposition 22 Whenever Re(s) <0
1. Z4(s) = C(€ = q(§) ™),

2. Specifically, for any non negative integer k
Z,(—k) =0.

3. Moreover, Z, is holomorphic at s = —k for any non negative integer k and Z'(—k) = Os),__,Cla™?)
where the derivative at k = 0 stands for the derivative of the map C(q~*) restricted to the half
plane Re(s) <0° .

Proof:
1. When Re(s) < 0, the map £ — ¢q(£)~* can be extended by continuity to & = 0 by®

0q,5(€) == q(§)°VE#0, 7,4,5(0) =0.

5In contrast to the value at s = —k which vanishes, one does not expect the derivative to vanish in general.
6Note that this extension is not smooth at 0 so that it does not define a symbol. It nevertheless has the same
asymptotic behaviour as |£| — oo as € — x(&) ¢(§)™* which is enough for our needs.
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In that case, there is no need to introduce a cut-off function x at 0 and we write:
Z4(5) = s metssmnzo 3 0(0) T = a(€)7 de +C(€ = a()™)
Zd

along the lines of the proof of the previous proposition. Here we take the finite part at z = 0
of the restriction z — 3,4 q(77)~***) to the half plane Re(z) < 0. Using polar coordinates
¢ =rw with r > 0 and w in the unit sphere, the result then follows from the fact that the cut-off
regularised integral vanishes if Re(z) < 0 since we have

foaer>de = top [ o >de
R [EISR
R
o —2s .d—1
= Ppe /w_l/o q(rw) T dE
R

<pr_}OO/O 7‘_25+d_1 d’l‘) (/ ‘<1q(w)—25 NS(W)>

- @) usw) | i y
P _,widr> / q(w)" =% ns(w if —2s+d#0
R —2S+d l€1<1

= 0 if —2s+d#0.

where 15 is the volume measure on the unit sphere induced by the canonical measure on R

. When s = —k, we also have C(¢ — ¢(£€)*) = 0 since C vanishes on polynomials so that Z,(—k) =
0.

. By Theorem 12 there is no pole at s = —k (the presence of the cut-off function y does not affect
poles) since the only pole corresponds to s = d/2. The map Z, is therefore holomorphic at
s = —k with derivative given by the derivative of the map C(§ — ¢(§)~°) at s = —k.
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PART II: Renormalisation procedures: a prologomon

We first extend the regularisation techniques described in Part I to log-polyhomogeneous symbols
with occur in nested iterated integrals and nestes iterated discrete sums. We then renormalise such
integrals and sums which are particular instances of more general multiple integrals and sums with
linear constraints studied in the last section.

1.
2.

Renormalised evaluators
Integrals of log-polyhomogeneous symbols

A Laurent expansion for canonical integrals of holomorphic families of log-polyhomogeneous
symbols

Renormalised nested integrals of symbols
Renormalised nested sums of symbols
Renormalised multiple discrete sums with conical constraints

Renormalised multiple integrals with linear constraints
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11 Renormalised evaluators

11.1 Meromorphic functions in several variables

We recall some very basic definitions concerning holomorphic and meromorphic functions in several
variables and refer to [GR], [Ho2] for further detials.

Definition 13 A complez-valued function f defined on an open subset Q@ C CF is called holomorphic
in 2 if each point w in Q has an open neighborhood U contained in 2 such that the function f has a
power Series erpansion:

o0

F(2)= Y aalHw) (z —w)*, aa(f)w)€C,

le]=0

where a = (a1, -, say,) € INE is o multiindez, |a| stands for ay +-- -+ ay and (z —w)® = Hle(zi —w;).

Osgood’s lemma tells us that, in contrast to the fact that continuous functions which are differentiable
at a point in each variable can well not be differentiable as functions of several variables at that point
(e.g: f(x,y) = ;z75= continued to zero by f(0,0) = 0), if a complex-valued function is continuous’ on

an open set 0 C C* and is holomorphic in each variable separately, then it is holomorphic in Q. This
amounts to saying that when the integrand is continuous, iterated Cauchy integrals can be replaced
by a single multiple Cauchy integral so that:

__1 f(QdG---dg. _ 19%f ‘ :
aa(f)(w) = W /ﬂfl e m =5 (w) Vr; >0 sufficiently small,

where we have set al = Hle a;l.

Osgood’s criterion provides a bridge to extend properties of holomorphic functions in one variable
to those in several variables. For example, using Osgood’s criterion, holomorphic functions can be
characterised via the Cauchy-Riemann equations.

Proposition 23 A complez-valued function f defined in an open subset Q of C* which is continuously
differentiable in the underlying real coordinates of C*, is holomorphic in Q if and only if it satisfies the
system of aprtial diferential equations:

05, f(2)=0 Vie{l, - kb,

Using Cauchy integrals, one checks that analytic extension also holds for holomorphic functions in
several variables.

Proposition 24 If two holomorphic functions f and g in a connected open subset  in CF coincide
on an non empty open subset U of 2, then they coincide on €.

Many more properties hold for holomorphic functions in several variables, which we do not mention
here since they will not be of direct use to us. Let us now turn to meromorphic functions in several
variables.

For every z € C*, let Hom,(CF) denote set of equivalence classes of functions which are holomorphic
in some neighborhood of z, under the equivalence relation f ~ g if f = ¢ in some neighborhood of z. If
f is holomorphic in a neighborhood of z we write v, (f) for the residue class of f in Hom,(C¥), called
the germ of f at z. We can specialise to z = 0 without loss of generality; elements f in Homg(CF) can
be identified with the set of all power series Z\a|>0 aq,2% which converge in a neighborhood of zero and
the value f(0) at zero corresponds to the constant term in the power series expansion. The set of units
in Homg(C¥), i.e. the set of invertible elements, is the set of germs of functions which do not vanish
at zero. An element f in Homg(CF) is called reducible if it can be written as product f = f; fo with
f1, f2 non units of Homg(C¥), otherwise it is called irreducible. The following factorisation property
follows from the Weierstrass preparation theorem.

"The assumption that the function be continuous is actually superfluous, but the proof of the statement without this
assumption, which is Hartog’s result, is much more difficult.
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Proposition 25 Homg(C¥) is a unique factorisation domain, i.e. every non zero element in Homg(CF)
can be written as a product of irreducible factors in one and only one way-apart from units and the
order of the factors.

For any z in a domain € of C*, Hom, (CF) is a ring without divisors of zero, so that one can form the
quotient field
Mer;(C*) := {f/g, f € Hom.(C*),g € Homo(C*), 70(g) # 0}

of germs of meromorphic functions at z.

In contrast to the one variable case, it is not possible to assign values in the extended complex plane to
every germ of meromorphic function in several variables in such a way that it gives rise to a continuous
function with values in C U oo.

Let us make this statement more precise. We call two non zero elements in Hom, (CF) relatively prime
if their factorisation into irreducible factors do not present common factors apart from units. The
following statement (Theorem 6.2.3 in [Ho2]) shows that it is not natural to assign any value, whether
finite or infinite to the quotient f/g of two relatively prime functions f and g in Homg(C*) which
vanish at zero.

Proposition 26 Let f and g be holomorphic in a neighborhood of zero with ~vo(f) and vo(g) relatively
prime. If g(0) = g(0) = 0, for every complex number a one can find z in any neighborhood of zero such

that g(z) # 0 and f(2)/9(z) = a.

Example 15 Take k =2 and f(z1,22) = 21, g(21, 22) = 21+ 22. Then along any straight line z1 = \zo
we have f(z1,A21)/9(z1, A 21) = ﬂfﬁ = l-i%\ for z1 # 0 so that for every complex number a # 0,

there exists z = (21,222 21) such that f(2)/g(z) = a for z # 0.

a

Conseauently, there is a priori no Laurent expansion representation for meromorphic functions in
several variables.

11.2 Meromorphic functions in several variables with linear poles

We therefore build sets of meromorphic functions with linear pole structure.
Let us first observe that the map defined on the (Grothendieck closure of the) k-th tensor product

T*(Holy(C)) := ®kH010 (C)® over the germ of holomorphic functions at zero by

T*(Holp(C)) — Holy(CF)

k
Q- ®fr — ((21,--- , 2k) Hfz(%))
i=1

is onto so that we can identify 7*(Holy(C)) = Holy(C*). Let us set Holo(C>) := @Pr-, 7" (Holy(C)).
Similarly, the (Grothendieck closure of the) k-th tensor product over the germ of meromorphic functions
in a neighborhood of zero:

T*(Merg (C)) := &"Merg (©®)

can be viewed as a subset of Mery(CF). We therefore equip the corresponding tensor algebra
T (Mero(C)) = &7, T*(Mero(C))

over Merg(C) with the product of meromorphic functions:
(o0 QUrn® @ fi) =@ @ fr® fr11® @ frp.
For any positive integer j, a similar construction can be carried out to build 7% (Mer}(C)) := ®kMer6 (C).

A first step is to extend regularised evaluators to tensor algebras of meromorphic functions in one

8The symbol & stands for the Grothendieck closure.
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variable. ‘
Clearly, a linear form A : Mer}(C') — C uniquely extends to a character

k
AfL&-© fi) = _HA(fa (11.73)

on 7T (Mer%(@)).
A similar statement holds when dropping the superscript j altogether, allowing for meromorphic func-
tons with any order poles at zero.

We now go beyond the tensor algebra and consider the following linear extension of T(Mer%((C))

which corresponds to germs at zero of meromorphic maps in severable variables with linear poles. Let
for j € IN, LMer),(C>®) := &2, LMer}(C*) where

I
LMer)(C*) :={] ] fio Li, fi € Mer)(C), Lie (C*)7}

i=1
or equivalently,
EMeré((Ck) = (Zla"' azk) = h(Zh.” ,Zk) mr h € Holy (Ck) , ML € INﬂ[O,j]
HLe(ck)* (L(z1,+, 2k))
(11.74)
Setting I = k and L;(21,- -, 2x) = 2; yields a canonical injection
i: TF(Mer)(C)) —  LMer)(C*)
k
fl®®fk = ((21,"',Zk)’—’HinLi(Zl,"',Zk)>7
i=1
and the tensor product on 7 (Mer?,(C)) extends to £LMer}(C>), b
1 J
<(Z1,"',Zk)k—> 11 014(21,"',Zk)> ® | (err, oo zer) = ] frag 0 Lovs(zrans - s 2040)
i=1 j=1
J
= |Gz ) = [ fio Lz, HfIJrJOLerJ Zidl o Zhtl) (11.75)

i=1
which makes it a graded algebra.

Specializing to linear forms L := {L € ((Ck)* 3 {1, kY, Lz, ,2k) = EjeJ zj}, gives
rise to a subalgebra LM (C™®) := @2, LM} (CF) € LMery(C>) defined by:

h(z1,- - 5 2k)

> heHoly (C*), mpe INNJ[0,4]
Moo, C ) ()

EM%((Ck) = {(zl, R I

(11.76)
We shall also consider the set
LMo(CTF) : U LM)(CF). (11.77)
7j=1
For future use, we consider the diagonal map ¢ : C — 7 (C) defined by
6p:C — C®* (11.78)
z - z-1%k (11.79)

and the induced map 6* : LMJ(CF) — Mer}(C)
o5 s LM)(CTF)

f -



11.3 Renormalised evaluators at zero
Following [Sp] we introduce renormalised evaluators at zero.

Definition 14 A renormalised evaluator A on a graded subalgebra B = @72 By of LMery(C>®) =
@2 L Mero(C*) equipped with the product @ introduced in (11.75), is a character on B which is com-
patible with the filtration induced by the grading and extends the ordinary evaluation at zero on holo-
morphic maps. Equivalently,

1. Compatibility with the filtration: Let BX = 695203;@ and N = A‘BK. Then (AK+1)|B =Ag.

K

2. It coincides with the evaluation map at zero on holomorphic maps:

A\T(Holo(c)) = €vo.

3. It fulfills a multiplicativity property:
A(f @g) = A(f)Alg) Vf,9€B.
We call the evaluator symmetric if moreover for any f in Bi and T in X, we have
A(fz) = A(f) VT ey,
where we have set fr(z1, -+, 2k) = f(2r1)s " 5 27 (k)

Example 16 Any regularised evaluator at zero A on Mero(C) uniquely evtends to a renormalised

evaluator \ on the tensor algebra (T (Merg(C)),®) defined by (11.73).

Example 17 Let B be a subalgebra of LMy(C>) equipped® with a coproduct which makes it a graded
connected Hopf algebra. Then the map §* : B — Mer(C) is a morphism of algebras

5" (f @g) = 0"(f) 6*(9)
to which one can implement Birkhoff factorization as in the Connes and Kreimer setup ([CK], [Ma]):

5= (57) " wor

using the convolution % associated with the product and coproduct on B combined with a minimal
substraction scheme. The map 6% (0) : B — C then yields a renormalised evaluator on B.

Example 18 Given a function f in LMero(CF), for anyi € {1,--- ,k} and any fized complex numbers
21,0y Ziyy Zid1s 5 2k outside a finite number of hyperplanes, the map z; — f(z1, -+ ,2) lies in
Merg(C) so that we can apply to it a regularised evaluator \. Let X\, stand for the evaluator A
implemented in the sole variable z;, the others being kept fixed.
Any regularised evaluator A on Merg(C) extends to renormalised evaluators A and A’ on LMery(C>)
defined on LMerq(CF) by

Ai=X, 00X, A=)\, 0--0)\,

and to a symmetrised evaluator defined on LMero(CF) by

1
sym ,__ .
AT = T E Azry @ O Az
TEXE

Their restrictions to T (Mero(C)) all coincide with .
Let us for example check the multiplicativity property for A; a similar proof holds for A’ and A®™.
Given f € By, g € B;

A(f®g> = )‘21 ( (/\Zk+z f(zla"' ,Zk)g(2k+1,"' aZk+l) )
= Oy (o O flony - 20)) ) (/\iekil (- Mornr0(zhsn, - ,Zkﬂ)...))
= A(f) Ag)

9Work is in progress to provide concrete instances of such a situation.
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Example 19 Take \ := evy®, and set with the above notations

ren .__ A. ren’ | ! ren sym . sym
evg "= Ay evg" i=A, evy = A%,

)

h(zl,Z2)

then given a holomorphic function h(z1,z2) in a neighborhood of 0 and setting f(z1,22) == = F -,

have

we

Vi (1) = Ouh(0.0); vt () = 0an (0,0 evynovm () = AHOOEBNOD) s 5 ).

But in general,
evgel’l ,Sym # eV O 6*

For example, for f(z1,22) = fi(21) f2(22) we have evy™ ™™ (f) = evy®(f1) evy 2(f2) whereas evy® o

0* (f) = evy *(f1f2)-

This example illustrates how such renormalised evaluators at zero pick up linear combinations of jets
of the holomorphic function h at zero. The following proposition shows that turns out to be a general
feature of these particular renormalised evaluators at zero.

Proposition 27 Let f be a meromorphic function with linear poles at zero of the type
h
HLEEk Lme

where h : C¥ — C is holomorphic at zero, and Ly, a set of linear forms on C*, my € IN.
The renormalised evaluated value of f at zero evi®™(f) is a polynomial expression in the jets of h at
0=(0,---,0). A similar property holds for evi™ (f) and evy ™™ (f).

=

Proof: Clearly, if the property holds for evie™(f), then it holds for evie™ (f) and ev oY), We

proceed by induction on k to show it for the renormalised evaluator evge“. The assertlon holds for

reg h(z) _ h(m)(O)
k =1 since ev, 5, s

Let us assume that the statement holds for £—1. Up to a multiplication of i by a scalar, we can assume
that all the linear forms Ly in the denominator involving z; are of the type zx + L' (21, -+ , 2x—1) with
L' possibly zero. So without loss of generality we can write £, = £ U £, _, U L] as a union of £
consisting of linear forms L(z1,--- ,zx) = 2k, of L}, consisting of linear forms in £; which do not
involve the variable zj, and of £}/, consisting of linear forms L(z1,- -, zk—1) entering in the linear
forms of Ly of the type a(zx + L(z1, -+ ,2k-1)) with a non zero. Up to a modification of h by a
multiplicative constant, we can therefore write f in the form:

h(z1, -, 2k)
[ieey 2™ Moer, LG5+ 2e-1)™ Mpepy  (2r+ Lz, 5 2k1)) ™"

f(Zl"'aZk):

with h holomorphic at zero. Applying the regularised evaluator eviig’zo at zero in the variable zj,
yields:

Y recomrL

8Zk * h(Zl,"' 7Zk7150)
L(217 e 7Zk—l)mL HLGEZ—I L(Zlu e 7Zk—l)mL

eviig:()f(zla e 7Zk) = H
LeL,

We can apply the induction assumption to the function in & — 1 variables z1,- -, zk_1,

Y Leco mL
reg 8zk k h(Zl, Ty Rk—1, O)

— 21,y 2k—1) B
23, =0 ( ) ) ) HL€£/71UEZk71 L(Zl, . 7Zk—1)mL

g:i=ev

By assumption ev™(g) is a polynomial expression in the jets at zero of the holomorphic function

L
21,0, 2k—1) > O ek h(z1,--+, 2K-1,0) so that evg™ =ev;™"(g) is a polynomial expression
k 0

in the jets at zero of the holomorphic function A, which proves the induction step. O
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To end this paragraph, we point out to a discrepancy caracteristic of renormalised evaluators, similar
to the ones observed for regularised evaluators. Given a function h in Holy(CF), we have the following
covariance property in the parameters:

evo(ho A) =evo(h) VA e Gii(C).

This does not hold for renormalised evaluators any longer. The following example shows how a change
of variable modifies the renormalised value.

Example 20 The evaluator evi®™ on By applied to f(z1,22) = Mziza) ip h(z1, z2) = z1 yields:

z1+22

evIen () = oV <evrcg M) = 01h(0,0) = 1

z1=0 29=0 Zl+22
whereas after a change of variable (uy,us) := (21,21 + 22) the function f reads g(uy,usz) = “—; and

evi™(9) = 0 # evi™ ().
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12 Integrals of log-polyhomogeneous symbols

12.1 The noncommutative residue extended to log-polyhomogeneous sym-
bols

We briefly recall some basic notions concerning log-polyhomogeneous symbols and fix the corresponding
notations. A useful reference for the log-polyhomogeneous symbol calculus is [L1].

For any complex number a and any non positive integer k, let C.S%¥( ]Rd) c Siel@) ( IRd) be the subset
of symbols o, called log-polyhomogeneous symbols of order a and type k with constant coefficients,
such that (compare with (2.11))

Z Taej(€) + oy (€) VEERY, such that [¢>1 (12.80)
where oy € Siele)= Y(R?) and
Ta—j(€) =Y 0ajul&) log'l¢], jEZy (12.81)

with o,_;,; positively homogeneous of degree a — j for each .
Endowed with the product of functions, the set

CSH(RY): U CSE(R?),  where CS**(R?) = ] CS&F(RY),
acC

generates the algebra filtered by k of log-polyhomogeneous symbols on IR?. In particular, CS=Y( ]Rd)
coincides with the algebra C'S,..(IR?) of classical symbols on IR? with constant coefficients.

Definition 15 For a non negative integer k and any non negative integer | < k, the [-th noncommu-
tative residue of a symbol o € C'SVF( IRd) with asymptotic expansion given by:

k N-—1
Z Oaq— Jl +U(N)(€) v|€| >1
=0 j=0
reads:
resl(a) :/ U_d)l(f) dsf. (12.82)
Sd*l

Remark 14 On CS?_(IR?) , resy coincides with the ordinary residue introduced in (2.20).

12.2 The cut-off integral extended to log-polyhomogeneous symbols

The cut-off integral extends to log-polyhomogeneous symbols on the grounds of an asymptotic expan-
sion generalising formula (4.30) (see e.g. [L1]) proved for classical symbols.

Proposition 28 Let o be a symbol in CSFF(RY).

1. Using the notations of (12.80), the integral f|§|<R o(&)d§ has an asymptotic expansion as R —
400 of the type

o0

k
/I£|§R 7 e ][md o©dé+ Y Y Pioa—ji)(log R) R*IH

Jj=0,a—j+d#0 1=0

k
+ > no)log™ R (12.83)
=0
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where the ri(o) are positive constants depending on o;,_q, Pi(c4—;1)(X) is a polynomial of degree
[ with coefficients depending on o4—j,; and where the constant term JC]Rd o is the cut-off integral
of o corresponding to the finite part:

][IRd o(§)d§ = /IRd U(N)(f) d§+‘/|£|<1 o(&)d¢
N k l+ll|
- Z Z (@a—j+d)t /5_1 0a—j,1(§)dsé, (12.84)
j —j+d#0 1=0 =

which is independent of N > a+d — 1.

2. The finite part is sensitive to a rescaling in the presence of residues; for any positive real number

A
log )\ - res (o
o [ o= a+Z esi(0).

Proof: We split the integral f|£|<R o(&€)d¢ according to the splitting in (12.80):

N-1
)& = 0a—;(§)d ooy (E)dE.
/59% Lt ;O /|£|§RX(5) ©) 5+/|£|§R ) (§)d¢

Choosing N > Re(a) + d, we have that o(y) € L'(IR?) and the integral I\EKR
when R — oo to [ra o) (§)d€. On the other hand, for any j < N —1

/ XOa—j :/ X Oa—j +/ Oa—j (12.85)
IEI<R |§1<1 I<[¢I<R

since x is constant equal to 1 outside the unit ball. The first integral on the L.h.s. converges and since
0a—j (&) = Zf:o Oa_jui(€)logh|€] V|€| > 1, the second integral reads:

k R
/ oa—j(§)dE = Z/ re=itd=1ogl 1 dr - / Oa—ji(w) dsw.
1<|¢|<R —~ ) ga-1

Hence the following asymptotic behaviours:

log ™' R / " ng R . .
Oa—j ~R—oo _ a—jil ———regi(o) fa—j=-d
/1<|§|<R J ; l+1 Sd—l J ZO l

Ny (§)dE converges

k l (_1)i+1 l!_ logiR

(—i)! a—j+n

Cami(E)dE ~Rooe T R [ o (s

~/1S£SR ! ; ; (@—j+d) gnr
Ra—j+d

S 1) | P S ,
+ (-1) l'(a;_j+d)l+1 /Sdil Ua_J)l(w) dsw

(_1)l+1“

+ m . /SGF1 Ua_j)l(w) dgw) if a —j 75 —d.

Putting together these asymptotic expansions yields (12.83) with constant term given by (12.84)
l+1 il

ARCLIS R d§+2 / AT TS Z e [ e dse,

7j=0,a—j+d#0 =0
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The A-dependence of the constant term follows from

Jog A\ !
log R

I+1 log A i
~hrose logTTRY G (5 )
R o8 pre +1 log R

log ™ (AR) = (logR1+

The logarithmic terms Zf:o relbjr# log"™ (A R) therefore contribute to the finite part by Zi:o IO%ZJ: .
res;(o) as claimed in the proposition.

a

12.3 Examples of log-polyhomogeneous symbols
12.3.1 Regularised integrals of translated symbols

The following lemma shows that IR¢ acts via translations on the set C'S**(IR?) of log-polyhomogeneous
symbols of type k, for any non negative integer k, thus generalising Lemma 8 which corresponded to
the case k = 0.

Lemma 10 Given a symbol o in CS“*(IR?) for some complex number a and some non negative
integer k, for any n € R?, the translated symbol tyo = a(-+n) lies in CS@E(RY).

Proof: We showed in the proof of Lemma 8 that IR? acts by translation on symbols and classical
symbols while preserving the order. Since any log-polyhomogeneous symbol o of log-type k reads

k
o(€) = o) log'[¢], Vg =1,
=0

with o(;) classical symbols, it suffices to show that log[t;¢] lies in CS*(IR?Y). Rescaling £ by A > 0
yields for large A:

log |ty (A)| ~ log A + log ‘{ + g‘ .

A Taylor expansion of 7 — log|t,| at zero yields an asymptotic expansion of log ’f + %’ in decreasing
powers of A from which we infer that log|t,-(A¢)| has asymptotic expansion involving at most one
power of log \. Thus the map & — log |, (&) is log-polyhomogeneous of log-type 1. O

The lack of translation invariance of regularised integrals observed in (8.62), naturally gives rise to
log-polyhomogeneous symbols.

Proposition 29 Given o in CS. .( IRd) and a holomorphic reqularisation R on C'SC_C(]Rd) of dimen-
sional regularisation type (8.57), the map

R
n— o tho(§)dg
R4
defines a log-polyhomogeneous symbol of log-type 1 unless o has vanishing residue in which case it is
classical.

Proof: This follows from (8.62) by which we have:

R R
F tio©de = ot +res(0() (oglé] - log ).
R? R4

By the above lemma, the symbol under the residue is log-polyhomogeneous of log type 1 in 7. Since the
residue corresponds to the integral over a compact set (the sphere) of some homogeneous component
of the symbol, this symbolic behaviour in 7 still holds after taking the residue and the result follows.
Since the logarithmic term in || arises as a factor of res(o), the symbol in 7 is actually classical if o
has vanishing residue. O
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12.3.2 “Radial primitives” of symbols

Setting R = |n| in (12.83) leads to the following operator which turns a classical symbol into a log-
polyhomogeneous symbol of type 1, thus justifying the need for log-polyhomogeneous symbols.

Proposition 30 [MP1] The following operator on C*=(R%):
P(f)(n) == / £(€)d¢ (12.86)
€1<[nl

maps CS:;f’l(IRd) to CSEE(RY) for any positive integer k, sending a symbol of order a to a linear
combination of symbols of order a + d and of zero order.

Iterating this operation, we build from classical symbols a log-polyhomogeneous symbol of type k.

Corollary 6 [MP1] Given o1, ,0f € C'SC_C(]Rd), the iterated nmested integration map

0 Ploy Poz - 0r 1 P(o) - ))(n) = /}E g @) k@) e de (28T

defines a symbol in CSXF( IRd) as a linear combination of symbols of order aj, + -+ a;, +id,1 =
1,---,k and of zero order.

Proof: This follows from the previous proposition by induction on k. 0O

12.3.3 Derivatives of holomorphic families

Log-polyhomogeneous symbols also arise from differentiating holomorphic families of classical symbols.

Proposition 31 [PS]Ifo(z)(¢) € Cnggz)’j( IRY) is a holomorphic family of log-classical symbols, then
so is each derivative

o (2)(6) = 0¥ (o()(€)) € OS2I+ (RY), (12.59)
Precisely, %) (2)(€) has asymptotic expansion
oW (2)(€) ~ Y oW (2)agz)-i(6) (12.89)
>0

where as elements of U“Z:(I; CS’STEZ)%’Z( RY)

0 (2)a()-i(€) = 0% (0(2)a()-i(6)) - (12.90)
That 1is,
(050(2)) 0oy (€) = 05 (0(2)a()4(6)) - (12.91)
Proof: We need to show that
05 (0(2)(9) ~ D 0% (0(2)az)—(9)) (12.92)
i>0
where the summands are log-polyhomogeneous of the asserted order. First, the estimate

N—

O (0(2)(€) = Y 0 (0(2)a)—i(§)) € Seel N (RY)

i=0

=

any € > 0, needed for (12.92) to hold follows from differentiating the remainder symbol in the asymp-
totic expansion of o(z)

N-1 k

O(N) (2) i=0(2) — Z ZU(Z)a(z)—i,z, i€ INg

i=0 [=0
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which, together with its derivatives in z, lies in girelal Z))7N+€( IRY) as a result of the locally uniform

estimates in z for the remainder term of holomorphic famlhes of symbols.

It remains to examine the form of the summands in EN ok ( (2)a(z)—i(€)) . Taking differences of
remainders o(y)(2)(§) implies that each term o(z), (z)_i(:zr,f) is holomorphic. In order to compute
92 (0(2)a(x)—i(§)) one must compute the derivative of each of its homogeneous components; for £ > 1

and any [ € {0,---,j}
. <|§|a<z>—i aa@_i,z(z)(é—'))
<a’<z> €O o)), |§|>> log ¢

I 0. (our )6

= (0a(z)—i,1(2)(8))

Since 042y, ( is a symbol of constant order zero, so is its z-derivative. Hence

v

a ( ( )a (2) (5)) = O/(Z) U(Z)a(z)fi,l(g) log[g] + pa(z)fi,l(z)(g)
where 0424, 1(2), Pa(z)—i,i1(2) € CS’STEZ)%( IRd) are homogeneous in ¢ of order a(z) — i. Hence,
9 (0(2)a(2)-i()) = a'(2) 0(2)a(z)-i (&) 10g[€] + Pa(z)—i,(2)(€) VIE] > 1, (12.93)

where we have set po(.)—;(2) := El 0 Pa(x)—i,1(2)() log! |€|. Thus, the derivative 9, (a(z)a(z)_i) lies

in 0§~ ITL(RY). Tterating (12.93), oF (Ga(z)—i(2)(£)) is thus seen to be a polynomial in log[¢] of
the form

(' (2))* Ta(e)—i, k(2)(€) log"™[¢] + ... + [¢*F)~ 55(%@)%,1(2)( )) log”[€]

€l

with each coefficient homogeneous of order a(z) — i. This completes the proof. O

Thus, taking derivatives adds more logarithmic terms to each term o(z)a(.)—; (&), increasing the log-
degree, but the order is unchanged. Specifically, o(¥) (2)a(z)—; takes the form

" (2)a(2)-i () = D oM (2)a(—s.1(€)log'[¢], (12.94)

=0

where the terms 0(®)(2),(,)_;.;(£) are positively homogeneous in ¢ of degree a(z) — j for |¢] > 1 and
can be computed explicitly from the lower order derivatives of o(2)q(z)—j,m(§). The following more
precise inductive formulae will be needed in what follows.

Lemma 11 Let 0(2)(€) € CSc.o(IRY) be a holomorphic family of classical symbols. Then for |£] > 1

DO = a0,
oM )E) = ()% (=)
+ e 0.0 ((E/IED),  1<I<k,
o® () = 1€ 0.0E) L (2)(E/kD).

Pproof: From the above

U(k) (Z)a(z)—j (5) = 85(0,( a(z) ] Z (k) l(g) 1Ogl [g]a
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so that
k

U(kJrl)(Z)a(z)—j &) = Zaz (U(k) (Z)oz(z)—j,l(g)) logl €] (12.95)
1=0
Hence for |¢] > 1
k+1
Z U(k+1) (Z)a(z)—j, l(é) logl |§| =
1=0
k
> a'(2) 0™ (2)ag)—j,r(€) log" M E| + [¢1°F77 0, (”(’“’<z>a<z>g~,r<%>) log" [¢]
r=0

where for the right-side we apply (12.88) to each of coefficient on the right-side of (12.95.) Equating
coefficients completes the proof. 0O

12.4 Derivatives of holomorphic families of log-polyhomogeneous symbols

We derive some useful formulae for derivatives of holomorphic families of log-polyhomogeneous symbols.
Let us first recall a technical result (see Lemma 1.24 in [PS]) which we then want to extend to log-
polyhomogeneous symbols.

Lemma 12 For j # jo one has teh following identityb of meromorphic functions

( (z)+d /Sd IU(Z)Q(Z)J'(QJSf)

l+ll|

k
Z ) —j +d)itT /SGH (afa(z))a(z)ijl (&) dsé. (12.96)

l:O

The equality holds trivially for K = 0. For clarity we check the case k = 1 before proceeding to the
general inductive step. For k = 1 the left-side of (12.96) is equal to

o (z)

(a(z) —j +d)? /Sd,1 0(2)a(z)—j (@, ) ds§

N m /sm 0: (0(2)a()—;) (€) dsé. (12.97)

From (12.93), for |¢] > 1
(0:0() o) (€) = &(2) 3(2Dagey5(6) 108 1E] + Pai)—s ()E)
and hence (0.0(2)) y(,)—;,1 (§) = &/(2) 0(2)a(z)—j (@, §) for [{| > 1. The expression in (12.97) is therefore

equal to
1

1

- e [ 9 (0Gla) © dst

which is the right-side of (12.96) for k = 1.
Assume now that (12.96) holds for some arbitrary fixed k¥ > 0. Then the left-side of (12.96) for

k + 1 is equal to
" -1
o- (2 (e [ st )

[ @y (€ dst
Sd—1
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)l+ll|

k
Z ) —Jj+d)Ht /SH (0%0(2)) 0250 (O ds§>

l:O

l+1 !
—J 42 d(;i") /SH o0 (2)a()-4.1(6) dsé

- N
M?’"/—\

)l+1 Al

k
T Z _] + d)H—l /5d1 8Z (U(k) (Z)a(z)—j,l(é.)) dSé, (1298)

=

where for the second equality we use the property that in the notation of (12.81)

(0 (=) ), (€ zaw a1, () og" €]

In that notation the right-side of (12.96) for k replaced by k + 1 reads

k+1 . l+1“
Z (a(z() —1)] + d)i+1 /Sd1 U(kﬂ)(z)a(z)—j,z(é) dsé, (12.99)
=0

while on the sphere S?~! where |¢| = 1 the identities of Lemma 11 become
k k
ol (@8 = (@)l (2)(@,6),
k k k
o @)@ = (@)l ()@ &)+ 0.0, (), ), 1<1<k,

o8 D@8 = 008 (), €).

Substitution of these identities in (12.99) immediately shows (12.99) to be equal to (12.98). This
completes the proof of Lemma 12. O

Identity (12.96) in particular implies that for the log-polyhomogeneous symbol 74 (z) := 0¥c(z) €
CSCOfEZ)’k( IR?) we have:

k l+ll|
<Z — i+ d)+T /SUF1 (Tk(z))a(z)—i,l (€) de)
=0
k l+ll'
- ( Z — i+ d I+1 ‘/Sd—l (850(2))a(z)—i,l (5) ng)
=0

— 65“‘ (Wld—z /SGH 0(2)a(z)-i(€) dsﬁ)

k+j
(=D ;
= ; (a(z) —i+ d)!H+? /Sdi1 (35"‘ U(Z))Ot(z)—i,l (&) dg¢

_1)l+ll|

S |
- ; (a(z) — i+ d)H+! /S (ang(Z))a(z)_m(ﬁ)dsg.

The following proposition (which is unpublished joint work with Simon Scott) shows that this

property holds for any log-polyhomogeneous symbol 7(z) € CSe. Ez)’k( ]Rd).

Proposition 32 Let 0(z) ~ Y ;2 0a(z)—i € CS?,EZ)*’“( RY) be a holomorphic family of log-polyhomogeneous
symbols. For any non negative integer j,

k
j (=)
" ( 2 oG it /S 7(2a()-i1(6) ds§>

=0

k+j

—1)i+1 )
-3 (a(z() —1)1'12)”1 /SH (900(2)) oy 1.1 (€ dsE (12.100)

=0
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Proof: To simplify the presentation, we only prove the case j = 1; as in the classical case, the case
j > 1 can be proved by induction along the same line of reasoning.
On the one hand we have

k —_1)H1n
- < 2 (a(z() —)i T d)tT /Sdl 7(2)a(z)-4,1(€) ds§>

1=0
S (DR 1) (2)
; — i+ d)+2 /Sd1 0(2)a(z)—1,1(§) ds€
k l+1l|
+ IZ — i+ d)H! / . 9z (0(2)a(z)—i.1(8)) dsé. (12.101)

On the other hand Lemma 11 (see Lemma 1.16 in [PS]) generalises to log-polyhomogeneous symbols.
Indeed, for any 1 <! <k and |[¢] =1 we have

d2(0a(z)—i,1(2)(§)) = 0 a)—i 1(2)(€) = &' (2) 0(2)a(z)—i,1-1(8);
d 2 (Ta(z)—i,0(2) () = 04(2)—i,0(2)(E),

and
T(e)—i k+1(2)(€) = & Ta(z)—i k(2)(6),

as a result of the relation:
k
0: (0(2)a(e)1(6)) = 0= [o(age)-11(6) log' [¢]
=0
k .
= 30 [l 0 (e (€ JE1 ) Tog' [¢]]
k
= Z g a z) loglJrl |§|
=0

k
+ D IED T, [0(2)a(n i (€ 1E]7H)] log! [¢].
=0

Hence, the last expression in equation (12.101) reads

k l+ll'
Z —i+d)+! /SH 0z (0(2)a(2)-i1(8)) ds§
z:o
1 /
- _m /Sd Ta(z)-i,0(2)(§) ds€

l+1l|

k
D M e e AR RN OIGLY:

=1

k l+ll|
- Z it d) / Oa(z)—i,1-1(2)(€) ds§

=1
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so that

H—ll'

k
lz: ity /SGH 9z (0(2)a(z)—i,1(8)) dsé

Il
e
+
AR
—
Q
~
NA
|
~. =
+| &
Q=
~=
+
—
o
I
q\
<
=

2)(§) ds¢

k410 4 1)1 )
(a(z)) — i(_|_ ;)kJ)& /Sd*1 To(z)—i, ky1(2)(€) dsé

=1y 1)
- d(2)) (((1(21))_ i(_’_—;)lli_Q /Sd1 Oa(z)—i,1(2)(§) dsé

=0
('

k+1
- ; (a(z) —i+ d)Hl /;d1 U‘/’(Z)—i,l(z)(@ ds&

k 1 +1 l_|_2
N Z —i+d) 13-2 / Oa(z)—i, 1(2)(§) dsé.
1=

Adding this to the first term YF W Jgams D20t g in (12.101) yields

k H-ll'
< Z it a)t /S(H o(2)a(z)—i,1(&) ds§>

=

k+1 _ H‘ll! I
-2 (04(2() —)i +d)tt /sdfl To(2)—i,1(2) (&) dsE,

=0

which gives (12.100) when j =1. O
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13 A Laurent expansion for canonical integrals of holomorphic
families of log-polyhomogeneous symbols

We generalise to log-polyhomogeneous symbols, the Laurent expansion previously derived for canonical
integrals of holomorphic families of classical symbols. To simplify the presentation, we only consider
the case of affine holomorphic order. This is based on unpublished joint work with Simon Scott.

13.1 A Laurent expansion

Theorem 13 Let k be a non negative integer and let z — o(z) € OSC‘?EZ)”“(]Rd) be a holomorphic
family of symbols parametrised by a domain Q C C with affine order function z — «(z ) The map z —
Fra 0(2)(€) d€ is meromorphic with poles of order < k+1 in a discrete set of points o' ([—d, 400 (VZ).
There is a Laurent expansion in a neighborhood of any zo € €2

k+1'0’20 KS‘UZO :
[ oteens — 327N ) L yuEG)

+ 0((z—20)%). (13.102)
For1<j<m+1, rj(o)(z) is locally determined and given by
(-t I

_ (1+1-3)
ri(0)(20) = lz;l PRV e ves (o) "7 (20) (13.103)

On the other hand, the finite part so(o)(z0) = evi (JCIRd o ) consists of a globally determinant
part JCIRd 0(20)(&) d¢ as well as a local term and gwen by

ovice (][]R a(z)(&)dg) - fw o(20)(€) dé (13.104)
l+1 1

k
(14+1)
+ ZZ ZQ l+1 l+ 1 res ((U(l)) (Zo)) .

For1<j <K, sj(0)(z0) which also involves a global and a local term reads:

55(0)(20) = ]lmd o9 (20)(€) de

k l+ll|]|

(F+141)
N lz "(20))HL (§ 4+ 14 1)! res ((U(l)) (ZO)) (13.105)

where we have set for any non negative integer [:

(&)~ > gajul€) x(9)
j=0

for any smooth cut-off function x which vanishes ina neighborhood of zero and is one outside the unit
ball, where as before,

oy ia(20) = (02 (a(e)—ia(2))) |=z0- (13.106)

Remark 15 o When k = 0, then o) = o9y = 0 so that we recover formulae (7.54) derived in
[PS] in the case of classical symbols.

e In general, (U(l))(r) (20) # (U(T))(l) (z0) as can easily be seen from differentiating o(z) = o-|&| " *at
2=0; (o0 (0) =0 but (")) = —0-
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Proof: Since the orders a(z) define a holomorphic map, for any zy € Q such that a(zy) ¢ Z
and o'(z9) # 0, there is a ball B(zg,r) C Q C C centered at zy with radius » > 0 such that
z € (B(z0,7) —{20}) = «a(z) ¢ Z. In particular, for all z € B(z,7) — {70}, the symbol o(z) lies
in OSSP (RY) and d +a(z) —j #0 ¥j € INU{0}. The finite part integral {4 o(2)(z, €)d¢ yields
a meromorphic function with a discrete set of poles in a™! ([—d, +oo[ (Z):

N

][]Rda(z)d‘é = /lea(N)(Z)(é)df+jz_:0/|§l<lx(§)aa(z)_j(z)dg
N &k
(—1)l+1l! »
- J;l; ((z) — j + )i /Sd710a<z>—g,z( )(§) ds€. (13.107)

Let jo € INU {0} be the integer such that a(zg) + d — jo = 0. Choosing N large enough so that
o(ny(2)(§) is integrable in &, we have

]l a(2)(6) dg (13.108)
Rd

= Z/E<1X(€)Ua(z)—j(z)(§) d‘§+/1Rd o) (2)(€) dg

L —1)!+1])
DD (a<z() T o oot i (E) s

Lt
D (oz(z() —1)¢ T a)+t /SH Ta(2)—i(2)(€) ds§

(-1 /
" Ta(2)=jo 1 (2)(§) s 13.109
; (a(2) — a(20))*1 Jga (=)ot (2)(§) ds§ ( )
Since o(z) is a holomorphic family of polyhomogeneous symbols, there is a power series expansion

oo

Ta(sy-1()(€) =D ol 1(20)(€)

r=0

(z—20)"

r!

(13.110)
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The first line of (13.109) therefore gives rise to a Taylor expansion:

R N T
= > Z/ X(&)a&)z@j(z)(g)) @dg

r=0 \j5=0 *(0,1)

i, (/ R o (20)(6) d‘g) @

r=0
N
- ;/B;(O,l)X(g)aa(ZO)_j(Z)(g)+/le oy (20)(€) dé
N
(r) (z (Z — ZO)T‘ 2
’ ; (72_:0 /|£|<1X €)% 4014 )(5)) T

R
: Z(/]Rd UEJTV))(ZO)(O(E) @
+ o((z—2)"). (13.111)

On the other hand, the third line in (13.109) yields a meromorphic function with poles at points zg
such that a(zo) €Z. Since the order function z — «(z) is affine, we have

k —1 l+1l!
; (a(z() - L(ZO))M /Sdl Ta(z)—jo.1(2)(§) dsé

_1\l+17 L i
[&87));1 \/;d—l U(_T;xl(zo)(g) de] %
0 r=0

k R
(=ptn (r+1+1) (z—z)"
+ ;; W /Sd*l o g1 (20)(§)ds§ CEESI
+ o((z—2)f). (13.112)

When j # jo, the expression a(z) — j + d does not vanish so that the second line of equation (13.109)
is also holomorphic as a function of z. It follows from Lemma 7?7 that

—1iH1
(a(z() —1)j T a)i /SLH Ta(z)-3.1(2)(€) ds§

R _1\l+1 I T
Za; ((04(2’() —1)1 +ld)l+1 /Sd*1 UQ(Z)j,l(Z)(f)d‘S§> % +o((z—20)")

0

- — l+1l! r z—z9)"
(oa(z() —1)1 +d)T /SH dsé 0£(l>_j,l(z)(§)1 % o ((z = 20)").
=0

M=

0

I
M=

l

I
M=
'—|?T' =3

ﬁ
Il
o

0

—

(13.113)
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Inserting (13.111), (13.112), (13.113) back into (13.109) and applying equation (13.107) to o) €
nggz)’kJrT(Rd), we find:

+1
1=0 t=0 (a'(20)) t!

T i
= > ﬂ/sdlo(tzz,z(zo)(f)dsﬁl Mdﬁ

(—1)l+1 -
Hmnwmmﬁfw<mﬁ

DI U

BOTE (1) faan 0T (20)(€) dsé
+ Z [Z (i/(lz)o))lﬂ Js - - (2= =)

(r+1+1)!

+ o((z—20)"].

Relabelling the terms, this gives the expansions stated in the theorem at the level of local symbols.
O

The highest complex residue in the Laurent expansion relates to the highest noncommutative residue
[L1] of the symbol o(zp). The following corollary provides a slight extension already proved in [?] of
the result derived in [L1] where it was asumed that o/ (0) = 1.

Corollary 7 [L1] Let k be a non negative integer. For any holomorphic family z — o(z) € CS*kF(IR?)
of symbols pammetrised by a domain Q C C with order function z — a(z) as in Theorem 13, then the
map z +— JCIRd o(z)(&)d¢ is memmorphic with poles of order at most k + 1 at any point zo € Q. The
pole of order k+ 1 of JC]Rd o(z)(&)d¢ at a point zy reads:

(_1)k+1k!

Rl f o0a = SR [ ot a
o’ (2o d—1
_1\k
%resk (o(20)) - (13.114)
[ W)

13.2 Regularised integrals of log-polyhomogeneous symbols

Given a holomorphic regularisation R, Theorem 13 provides a meromorphic extension JC]Rd R(o)(2)(€) d¢
of the holomorphic function [, R(0)(2)(£) d¢ on the half plane Re(a(z)) < —d with Laurent epxan-
sion whose coefficients are noncommutative residues of the jets at zero R(™(0) (o)) (see (13.106)) of
the classical components o) of the symbol.

Proposition 33 Let R : o +— o(z) be a holomorphic regularisation which sends a symbol o in
CS=F(RY) to a holomorphic family o(z) with affine order a(z) = —qz 4+ a(0) for some ¢ > 0. We
have the following Laurent expansion:

thlfl

MWM%=Zme(<mwﬂ

R? 1=0 t=0

k
1 1
+ ][md o(€) dé + Z Narass (RED(©O)(o0)))

R ; res (R(T““)(O) (O'(l))
+ z_;]lmd RM(0)(0) = + z;

Z l-;—l CEAESY 27+ O(ZR).

73



In contrast to the other coefficients of the Laurent expansion which depend on the holomorphic regu-
larisation R, the highest order residue given by (13.114) is independent of the choice of R.

On teh grounds of this proposition, we set the following defintion.

Definition 16 Given a holomorphic regularisation R : o — o(z) which sends a symbol o to a holo-
morphic family o(z) with affine order a(z), the constant term in the Laurent expansion given by

][]:d o(&)d¢ = evy® <][ R(o d‘§>

is called the R-reqularised integral of o.
If R : 0w o(z) is a holomorphic regularisation of type (8.57):

R(0)(2)(€) = H(z)a(§) [€]7 VIE[ =1, H(0) =1,

[ egae={ ooa

d—
2w 2

r(4%2)
o

we set

n

n

called a dimensionally regqularised type integral of o. If H(z) := , this corresponds to a dimen-

[SEY

[S8
~—1

stonally regularised integral which we denote by dlm ree o(&)dg.
If moreover H =1, we set

Riesz R
][ o dc =1 ole)de,

R R4
called the Riesz regularised integral of o.

Specialising to dimensional type regularisation, leads to the following.
Proposition 34 Let R : 0 — o(z) be a holomorphic regularisation of type (8.57):
R(0)(2)(§) = H(2)a(§) [€]7% V[ =1, H(0) =1,

and o a symbol in CS:}C]“(IRd). There is a Laurent expansion in a neighborhood of 0 with coefficients
given in terms of the jets of H at zero:

k+1 ( ) reS( (l))
_ I+1—j
RO ZZ Ty A0

j=11l=75-1
dim.reg,H
U IGL
le
+ i ][ 0—(j) d‘ £+ Z H(j+l+1)(0) res (U(z)) i
o\ ° i+ l +1)! 7l
G (13.115)

with

dim.reg,H k 1
fo @ = a@dc+ Y g HOVO) s ().

R4 R4 ot
Moreover, we have
Res), <]l a(z)(g)dg) = zk: _n HF=9)(0) res(o(p))
O\ e S =) 7
which for j =k + 1 reads:
Resk 1 <]ZIR g(z)(g)d§> = Kl resy (o),

independently of the jets of H at zero.
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Setting H = 1 in the above proposition shows that Riesz regularised integrals coincide with cut-off
regularised integrals of log-polyhomogeneous symsbols, thus generalising a property already observed
for classical symbols.

Corollary 8 Riesz reqularised integrals coincide with cut-off reqularised integrals.

(0]



14 Renormalised nested integrals of symbols

This section based on joint work with Dominique Manchon [MP1], is dedicated to the renormalisation
of nested integrals of symbols which obey shuffle relations.

14.1 Rota-Baxter relations and shuffle product

Recall from Paragraph 1.1 that a Rota-Baxter operator on an algebra A over a field k is a linear
operator P : A — A such that the relation:

P(a)P(b) = P(P(a)b + bP(a)) + AP(a)P(b) Vo,T € CS’:.’C*(]Rd). (14.116)
holds for any a,b in A. Here A is a scalar in the field k called the weight!'0.
The operator P introduced in (12.86) satisfies the weight zero Rota-Baxter relation which corresponds
to an integration by parts in disguise.

Proposition 35 The map o +— P(U) defined by(12.86) obeys the following Rota-Bazxter relation
[EGK]: . . o o
P(o) P(1) = P(c P(1)) + P(1 P(0)). (14.117)

Proof: The Rota-Baxter relation follows from:

P(o)(n) B(r)(n) = /|£|<|IU(§)d§ /“T(s)dg

= o(€)d T(€)dé 7(&) d o(§)dé€
/|£|§|n| © 5/59 © §+/I£|§|n| © g/Iélswl G)ds

= P(o P(1))(n) + P(r P(0))(n).

O

Let us now recall the definition of a shuffle Hopf algebra following the presentation in [MP2].

Let V be a linear space and 7 (V) = @, V" be the associated tensor algebra. The shuffle product
m is defined by: -

(V1 ® - @vg) W (Vg1 @ -+ @ Vpy) 1= Z Vr=1(1) @+ @ Ur=1(g41)
TEX

where 7 runs over the set Xy, of (k,)-shuffles, i.e.
Y ={7€%kp, st. 7()<---<7(k) and T(k+1)<---<7(k+1).}

For k£ = 2 this reads:
V1 lg = V1 @V + V2 X V.

The shuffle product and the deconcatenation coproduct:
k
A @ @u) =Y (1@ 20;) Q) (031 ® - D)
3=0
endow 7 (V') with a structure of connected graded commutative Hopf algebra (7 (V),1m1, A) [H1].
In terms of the shuffle product, relation (14.117) reads:

</ U(él)d&) (/ T(§z)d£2> =/ (o mT)(&,&)dédEs. (14.118)
0<]€1|< ] 0<|€21< | o<l < &< n]

The aim of this section is to extract finite parts of the expressions on either side as |n| — oo while
preserving the identity, i.e. while preserving the shuffle relations. Naively extracting a finite part as
[n] — oo for each of the integrals involved in these expressions does not do the job since the finite
part of a product does not generally coincide with the product of the finite parts. A more subtle
renormalisation procedure is needed.

10Some authors use the opposite sign convention for the weight.
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14.2 Nested integrals of non integer order symbols
We introduce the following nested integrals.
Definition 17 Given R > 0, for symbols 0; € CSe (IR, i € {1,--- ,k} we set

nested
/ 0'1 ® P ® Uk
B(0,R)

/ 01(60) 72(62) - ox(€x) dEs - i
0<&r|<|p—1|<<I&1|<R

= / fl(frl)...fk(rk)drl... drk
<rp<rg_1<---<r;<R

where fi(r) = rd=! f\f\zl 0i(ré) dsé and B(0,R) := {¢ € RY,|¢| < R}.

These nested integrals correspond to ordinary nested integrals fr<rk<~~~<T1<R Wi A~ Awg, with w;(t) =

fi(t)dt. As such they enjoy the usual properties of one-dimensional nested integrals (see e.g [Ch], or
Appendix XIX.11 in [Ka2]). In particular, they obey shuffle relations. For symbols o; € C'S...(IRY), i
varying from 1 to k, we have:

nested nested nested
][ (01 @ @ 0k) I (Opp1 @ -+ @ Oppt) = ][ 01®- Q0o ][ Ohi1 ® - ® Oy
B(0,R) B(0,R) B(0,R)
(14.119)

nested
o as R — oo.

In view of Corollary 6, we control the asymptotic behaviour of the map R — f»B(O R)
Picking the constant term in the expansion leads to the following definition.

Definition 18 Given o; € CS.o(IRY), with i € {1,---  k}, we set

nested nested
][ o1R- Qo = pr_}OO][ 01Q R oy
R4 B(0,R)

= 4 OP (Pl PlaaPlon) ) (€)d¢

d¢ ) d )
][Rd 1/2<51 /Iﬁklgl&l §e 01(&1) - on (&)

Proposition 36 Given symbols o; € CS...(RRY) with i € {1,--- ,k} whose orders a; satisfy
a7(1)+-~-+av(i)+id¢ Ny, Vv e Xy, Vi€{1,~-~,k},
(this holds in particular if none of the partial sums of the orders is a multiple of d) then
nested
H][ §dé= > ][ Ty1) @ @ Oy h)- (14.120)
R
YELK
Similarly, for symbols o; € CSe.o(IRY) with order a;, the index i varying from 1 to k+ 1, provided
a,y(l)—l—---—i-a,y(l-)—kidgé Ny, Vv e i, ViE{l,"',k-f—l},

( in particular if none of the partial sums of the orders a;’s is a multiple of d) we have:

nested
][ (01® - ®0op) W (Opg1 @ @ Opgr)

IRd
nested nested
= ][ 01 Q- Qo ][ Ok41 @ @Okt | - (14.121)
R R?
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Proof: The equality
§)d¢ = / (1) @ @ Try(k)
H / B(0 R) 7; B(0, R) !

follows from writing the product space Hle B(0,R) as a union of sets A, := {¢ € R, &5y | <
Ev—n)| < <& < R}

Both sides have asymptotic expansions of type (12.83) as R — oo involving products of powers R% —Ji+d

and logarithmic powers logl R where a; is the order of o; and j; are non negative integers. If a. 1) +
-+ a4 +id ¢ Ng for any i € {1,--- ,k} and any v € ¥, no extra finite contribution other than

the product of the constant terms, can arise from products of such powers. In this case, taking finite

parts on either side yields:

f[fmdm = [ton o [ aite)ie

nested

= pr_)OO Z/ U'y(l '®U’y(k)

~ESH B(0,R)

nested
- Z][W Ty1) @+ & Oy (k)

YEZK

which leads to (14.120). One derives (14.121) from (14.119) along the same line of proof. O

14.3 Nested integrals of holomorphic families
A holomorphic regularisation R on CS. ( ]Rd) induces one on the tensor algebra 7 (C Se.of ]Rd)):

R(o1 @+ @ op)(z1, -+, 2k) = R(01)(21) ® - - - @ R(0%) (2k) (14.122)

which is compatibile relation with the shuffle product

R(01® - @0p) M (0431 @ @0ppy)) =R(01@ - Qo) MR(0pp1 @ Dopyy)  (14.123)
for any o; € CSe.o(IRY), i€ {1,--- ,k+1}.
Remark 16 Note that in the case k = 2 compatibility with the shuffle product means
R(o1 1 02) (21, 22) = R(o1) M R(02) (21, 22)
in spite of the fact that:

75,(01 LUUQ)(Zl, 2’2) = R(al)(zl) ® R(Ug)(Zz) + R(Ug)(zl) & R(Ul)(ZQ)
# R(o1)(21) mR(02)(22) = R(01)(21) ® R(02)(22) + R(02)(22) ® R(01)(21).

The holomorphic regularisation R induces a one parameter holomorphic regularisation:
(5* o ﬁ) (01 ® - R0ok)(2) =R(61)(2) ® -+ @ R(op)(2), (14.124)

which is also compatible with the shuffle product.

(6* 075,) (61 @+ ®@o) W (041 R+ @ Tkt1))
= (5* o 7%) (1@ @0y) W (5* o 75) (Ch1 @ ® 0hst), (14.125)

Here, ¢ is the diagonal map introduced in (11.78).
The following theorem describes the pole structure of nested integrals.
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Theorem 14 Let R : 0 — o(z) be a holomorphic regularisation procedure on CSC,C(IRd) such that
o(z) has affine order a(z) = —qz + «(0) with ¢ > 0.
For any o; € CS’C,C(]Rd),i =1,---,k, with orders a;,i =1, -+ |k,

1. the map .
neste:
(21, 2k) = ) R(o1®---®@o0x) (21, 2k)
R

is a meromorphic function in several variables with poles on a countable set of hyperplanes
aj, +---+aj +id—n

Gy btz = , , ne N (14.126)

amongst which those passing through zero:

Zq_(l)_|_..._|_27_(i):()7 ie{l,---,k},TEEk-

2. The following identities of meromorphic functions hold:

ncstcd
H][ R 01 ZZ df = Z ][ O'T 1)) (27(1)) ®--QR (Uf(k)) (Zr(k)) (14.127)

TEX L

and for symbols oiy1, € CSec.o(IRY) of order a;y with i varying from 1 to I,

nested
][Rd (R(o1)(21) © - - @ R(ok)(2k)) 11 (R(0k41)(2h41) © -+ @ R(0kt1)(2k41)) (14.128)

g

3. Hence the following identities of meromorphic functions

ncstcd
[H][ R(04)(z:) )df] [Z][ Or(1) @ ® Or () (zl,~-~,zk)] (14.129)

TEY
and

nested nested
f R(Ul)(21)®---®7€(0k)(2k)> (f R(ok+l><zk+l>®---®R<ok+l><zk+l>>.

R4 R4

Sym

nested
l][md (R(o1)(21) @ -+ @ R0k ) (2k)) 1 (R(Ok41)(2k41) @ -+ @ R(UkJrl)(ZkJrl))]

sym

nested nested
= K][ R(o1® - @ok) (21, 7Zk)> <][ R(Ok1 @ ® Ohpt) (21,7 ,Zk+l)9l}
R4 R4

where as before “sym” stands for symmetrisation in the complex variables.

4. Provided
aT(1)+~-~+aT(i)—|—id§§ Ny, V7e Xy, Vi€{1,~~~,k}
(which holds in particular if the partial sums of the orders are not multiples of d), then (14.127)
holds as an identity of holomorphic functions in a neighborhood of zero, which when evaluated at
zero, gives back (14.120).
Provided
a,y(l)—i----—i-a,y(i)—i—idgé Ny, Vv e i, ViE{l,"',k-f—l}
(which holds in particular if the partial sums of the orders are not multiples of d), then (14.128)

holds as an identity of holomorphic functions in a neighborhood of zero, which when evaluated at
zero, gives back (14.121).

Proof: To simplify notations we set 0;(2) = R(0;)(2).
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1. The symbol o4 P(ogp(- .- P(oy) - -+)) is a linear combination of symbols of order aj, +- - -+aj, +(i—
1)d, withi € {1,---,k}. This can be shown by induction on & writing 01P(02P (- P(opy1) ) =

olP( ) and applylng Lemma 30 to o := 0o P(03P(--- P(0}41)---)) which by the induction as-
sumption, lies in C'S*F=2( IRd) as a linear combination of log-polyhomogeneous symbols of order
aj, +---+a;, +({@—1)dwith i € {1,--- ,k — 1} and log-type k — 2.
In the same manner, the symbol oy (z1)P (0 (22)P(--- P(ok(zx)) -+ )) can be viewed as a lin-
ear combination of holomorphic log-polyhomogeneous symbols of log type k — 1 and order
aj (z5,) + -+ aj,(25,) + (1 — 1) d where o;(z;) is the order of 0;(z;). Since by assumption,

ajl(zj1)+"'+aji(zji)+(i_1)d:aj1(0)+"'+o‘ji(0)+(i_1)d_Q(zj1+"'+Zji)v

we can apply Theorem 13 with complex parameter z = z;, +--- + z;, to each of the holomorphic
families of symbols with order a;, (zj,)+- - -+« (z;,)+ (i —1) d arising in this linear combination.
This shows that their cut-off sums are meromorphic with poles of order k£ on a countable set of
hyperplanes o, (z,) + -+ + a;,(z,) + (i — 1) d € [—d, +o0[Z, i.e

aj, +---+aj +id—n

Hyperplanes of poles through zero are therefore of the type zr() + -+ + 2,4 = 0, i €
{1,--- ,k},7 € E, as anounced.

2. We now know that the expressions on either side of identity (14.127)

nested
H]Z i(z)(&) d€ = Z ]Z or1)(2r(1)) ® or (k) (27 (k)

TEX)

are meromorphic functions. By Proposition 36, this identity holds outside the discrete set of
points - (1y(2-1)) + - + ;) (2-3)) + id € INg and hence outside the hyperplanes of poles.
Thus, the identity holds as an equality of meromorphic functions.

3. By the second item of the theorem we have:

nested
H][ Zz d§ = Z ][ UT(I - ® U‘r(k))(z‘r(l)a T 7ZT(k))'

TEX)

The third item in the theorem then follows from

(75(07(1) B ® o) (e ’ZT(’“)))sym = (R(or() @+ @ 0r() (1 20)) oy 77 € B

4. If
a7(1)+---+a7(i)+id¢ No, 7€X,ie{l, -k}

the functions on either side of (14.127) are holomorphic at zero. Evaluating them at zero yields
back (14.120).
A similar proves shows (14.128) and the related statement at the end of the theorem.

O

14.4 Nested integrals renormalised via evaluators

Given a holomorphic regularisation R which takes a symbol o to a symbol R(c)(z) with holomorphic
order a(z) = a(0) — gz for some positive real number ¢, we infer from Theorem 14 that the map

nested
Ul@...@)gk,_,][ R(01®---®Uk)
Rd

defined on the tensor algebra of classical symbols, takes its values in the algebra LM (C*) (introduced
n (11.77)) of meromorphic functions with linear poles at zero given by

Zrayt o+ 270 =0 VreXy, Vie{l,---, k}
We set the following definitions.
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Definition 19 Let R : 0 — o(z) be a holomorphic regularisation procedure on CSe .( ]Rd) such that
o(z) has affine order a(z) = —q z + «(0) with ¢ > 0.
Given a renormalised evaluator A at zero, we set for any o € CS*(RY)

fﬂ:A o(€)dé = A ( ~4 RO dg)

and for any o; € C'SC,C(IR”l)7 ie{l,---,k}

nested, R, A nested
][d o1 @ Qo :=A| (21, ,2) — , R(o1 @ @op)(z1,-+ ,2k) | -
R R

Proposition 37 Let R : 0 — o(z) be a holomorphic reqularisation procedure on C'Se ( IRd) such that
o(z) has affine order a(z) = —qz + a(0) with ¢ > 0.
Given a symmetric renormalised evaluator A at zero, the following identity holds:

nested,R,A
H][ €)dé = Z][ Tr1) ® -+ ® Tr(r): (14.131)

TEX)

Provided
ary + -+ ayq) +id¢ No, VreXy, Vie{l,---,k}

(in particular if the partial sums of the orders are not multiples of d) then this boilds down to (14.120).

Proof: Equation (14.131) follows from implementing the evaluator A on either side of (14.127). Indeed,
compatibility of any evaluator with the product & (defined in (11.75)) ensures that

A <(21, e zR) f[l][md R(0:)(z)(€) df) = f[/\ (Zi ’—>][ dR(Ui)(Zi)(f) df)
H ][ ) d,

which yields the left hand side of (14.131).
Using the linearity of A on the r.hs. of (14.127) combined with the symmetry of A which implies that
for any 7 € X, for any o1, -+ ,0% € C’SC_C(]Rd)

nested

R(0r(1) @+ @ 0riy) (21, 7219))
Rd

A ((zl,--- ,2k) —

nested
= A ((21,"' ) 2k) » Ror(y ® -+ @ 0riy) (2r(1), - - 72'7-(19))) ,

then yields the right hand side of (14.131). O

This gives rise to a character on the tensor algebra 7° (CSC,C(IRd)). We first need a technical re-
sult.
Lemma 13 Let R : 0 — o(2) be a holomorphic regularisation procedure on CSe..(IR?) such that o(z)

has affine order a(z) = —q z + «(0) with ¢ > 0.
The map

@R:T(OSC_C(]I{d)) — LM,(C)
nested

R4
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satisfies the following identity of meromorphic functions. For any symbols o1, -+ ,0p4; in CSe.c.( ]Rd)

[(I)R ((0-1 R ® O'k) 111 (o‘kJrl R ® Uk+l))] sym

= [®R(01® @ op) ®PR (0441 @ -+ ® o)) (14.133)

sym

where & is as in (11.75) and the subscript sym stands for the symmetrised expression in the complex
parameters z;’s.

Proof: By (14.130) we have

R

nested nested
= [<][ R(o1® - @ok) (21, 7219)) <][ R(Ok41 ® - @ Opg1)(Zht1, - 72k+l)>‘| :
R4 R4
sym

from which we infer (14.133). O

nested
[][ ) (R(Ul Q- Qo) (21, 7219)) il (R(Uk-i-l ® - @ Oppt) (Zhg1, ,Zk+l)>1
sym

Proposition 38 Let R : 0 — o(z) be a holomorphic regularisation procedure on CS**(U) such that
o(z) has affine order a(z) = —qz + «(0) with ¢ > 0.
Given any symmetrised renormalised evaluator A at zero, the map:

PRA . (T (CSC,C( IRd)) ,m) - C (14.134)
nestedR,A
o1® - Qo — o1® - ® 0
Rd
defines a character i.e. for any symbols o1, , 041 in CSec.o( IRd)
RA R,A R,A
][ (01@"'®0k)ﬂ_1(Uk+1®"'®0k+1)= ][ 01 Q- Qog | - ][ Ok41 Q- Q@ Oy | -
R R R4
(14.135)

Proof: This follows from applying the evaluator A on either side of (14.133) using the fact that
A(f) = Afoym)  Vf € LMo(C™)

since A is symmetric. O

14.5 Nested integrals renormalised via Birkhoff factorisation

An alternative method to renormalise is to consider the map 6* o ®®. The following statement is a
straightforward corollary of Lemma 14.

Proposition 39 Let R : 0 — o(z) be a holomorphic regularisation procedure on CSe.o(IR?) such that
o(z) has affine order az) = —qz + «(0) with ¢ > 0.

The map
5 o R . (T (CSC,C( IRd)) ,LLI) — (Mery(C™®), )
nested _
1D @Oy (5%73) (01 ® - @) (2) (14.136)
IRd
is an algebra morphism, i.e. for any symbols o1, , 041 in C'SC_C_(IRd)

(60 ®™) (01 ® @ op) W (041 @+ @ Oppt))
= (0"0®®)(01® - @0ok) - (6*0®T) (ohy1 @+ @ ohyr), (14.137)

where - stands for the ordinary product of functions.
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We know that the tensor algebra (’T(C’S’c.c( IRd)),LH) equipped with the deconcatenation coproduct:

k
A(0—1®...®0-k);: (gl®...®gj)®(0'j+1®-..®O'k)
Jj=0

inherits a structure of connected graded commutative Hopf algebra [H1]. Using the convolution product
% associated with the product m and coproduct A on 7(CS..(IR?)), we can implement a Birkhoff
factorization to the map (6* o ®7) as in the Connes and Kreimer setup ([CK], [Ma])

(5* ° (I)R) _ (5* o (I)R)Jr % (5* ° @73)7
associated with the minimal substraction scheme to build a character
(50 @®) (0): (T (OSC_C(IRd)) ,m) ~C.

Proposition 40 [MP2] Let R be a holomorphic reqularisation which sends a symbol o to a symbol
o(z) with order a(z) = a(0) — q z for some positive real number q. The map

¢R,Birk . (T (OSCC(Rd)) ,]_H) - C
@@ > (§T0®R), (0)(o1 @ @oy)

HRoBirk

defines a character. In other words, satisfies shuffle relations:

¢R,Birk ((0-1 R ® Uk) il (O’k+1 X ® O'kJrl))
_ ¢R,B1rk (Ul®"'®0k) ¢R,B1rk (0k+1 ®"'®07c+l)

This yields an alternative set of renormalised nested integrals of symbols
nested,R,Birk )
]Z 1@ @op =N (0 @ @)
IRd

which obey stuffle relations:

R,Birk R,Birk R,Birk
]Z (01 @ @ok) W (Op41 ® -+ @ Oppr) = ]Z o1& - Qo |- ][ Okt1 @ -+ @ Okt
R R R4
(14.138)
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15 Renormalised nested sums of symbols

This section which is based on joint work with Dominique Manchon [MP2], closely follows the pattern
of the previous section. Here, we renormalise nested discrete sums instead of the nested integrals which
were the object of study of the previous section.

We restrict to dimension d = 1. For any complex number a and any non negative integer k the
notation P%* stands for positively supported log-polyhomogeneous symbols of log-type, i.e. symbols
in CS%F(R) with support in |0, +o0c[. We keep mutatis mutandis the notations of subsection 1.1; in
particular P*Y is a subalgebra of the filtered algebra P**.

15.1 A Rota-Baxter operator
The operator P defined on sequences o : IN — C by:

= Zn:f(k) (15.139)

k=0

satisfies the Rota-Baxter relation with weight 1. Similarly, the operator @ = P — I which acts on
sequences f : IN — C by:

Q(f)(n) = i f(k) (15.140)
k=0

satisfies the Rota-Baxter relation with weight —1.

The Rota-Baxter operators P defined in (15.139) and P defined in (12.86) relate by means of the Euler-
MacLaurin formula (6.40) which compares discrete sums with integrals and provides an interpolation
of P(0) for some symbol & by a symbol P(c).

Proposition 41 [MP2] For any o € P**, the discrete sum P(c) can be interpolated by a symbol P(o)
in POtLE+l 4 POEHL (i e P(o)(n) = P(o)(n) =Y 1_yo(k) Vn e IN) such that

P(o) — P(o) € P™".
The operator Q := P — I : P@F — patlktl L PO+l ynterpolates Q.

Proof: By the Euler-MacLaurin formula (6.40) we have for a positive integer n

e K d“Z D (o) = o @)

+ H}{# /On Br(z) o) (z) da. (15.141)

For any positive 7, the expression

Poym = “ET L o dﬂz 2 (5 ) — o0 (0))

_\K-1
v S | BR@ e w (15.142)

defines a symbol which interpolates P(o). More precisely, the sum U( ) + ZQK ]j, aU=1(n) lies in

P> whereas the integral P( ) lies in PotLE+L 4 POA+L - The result then follows from splitting the
integral remainder term into +°°(...) - f:oo(...): the first term in the sum is a constant for large
enough K, and the second term is a symbol (with respect to the variable n) with order a — (2K + 1)

whose real part is arbitrarily small as K grows, which lies in P**. O
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15.2 Stuffle relations

We recall the definition of a stuffle Hopf algebra, following the presentation in [MP2].

Definition 20 Let k,l,r € IN with k+1—1r > 0. A (k,l)-quasi-shuffle of type r is a surjective map m
from {1,...;k+1} onto{1,....k+1—r} such that 7(1) < --- < m(k) and n(k +1) < --- <w(k+1).
Let us denote by mixsh(k,l;r) the set of (k,l)-quasi-shuffles of type r. The elements of mixsh(k,;0)
are the ordinary (k,1)-shuffles. Quasi-shuffles are also called mixable shuffles or stuffles. We denote
by mixsh(k, 1) the set of (k,l)-quasi-shuffles (of any type).

Let A be a commutative (non necessarily unital) algebra equipped with a product e and let x, be the
product on 7 (A) defined by:
(1@ @) ke (k1 @ ®Upp) = > W@ @Wi,,
memixsh(k,l)
with :
wji = 11 Vi,
i€ {1, k), m(i)=j

where the product above given by the product e of A, contains only one or two terms.
For k = 2 this reads:
V] *e Vo = V1 M1V + V1 ® Vo,

Notation: In the following we set x; when the product e is the ordinary product i.e. v, ® vo = vv2,
and x_ when it is the opposite of the product i.e. v; @ v5 = —vqvs.

Theorem 15 (M. Hoffman, [H] Theorems 3.1 and 3.3)

° (T(A),*., A) s a commutative connected filtered Hopf algebra.

o There is an isomorphism of Hopf algebras :
exp : (T(A),1m1,A) = (T(A), *e, A).

In [H2] M. Hoffman gives a detailed proof in a slightly more restricted context, which can be easily
adapted in full generality (see also [EG]). Hoffman’s isomorphism is built explicitly as follows: let P(n)
be the set of compositions of the integer n, i.e. the set of sequences I = (i1, ..., 1) of positive integers
such that iy + -+ i =n. Forany u =v; ® --- ® v,, € T(A) and any composition I = (iy,...,i) of
n we set:

Iu] == (vi @ 00;,) ® (Vi 41 ® @ Vi 4iy) @+ @ (Vi 4oty 41 @+ @ Un).

We then further define: .
expu = Z ——TIu].

[ |
11" U -
I=(ir, o ip)€P(n) 0 F

Moreover ([H2], Lemma 2.4), the inverse log of exp is given by :
(_1)n—k
I = - .
S "
I=(i1,,ix)EP(n)
For example for vy, vs,v3 € A we have :
expvy =v1 , logv =i,
1 1

exp(v1 ® v2) = vy ®02+§v1°v2 , log(v1 ® v2) = v1 ®vg — 51}1 ® Vg,

exp(v1 ® vz ®v3) =v1 QU2 ®v3  + §(Ul.v2®v3+vl®v2.v3)+6“1"02.”37

1 1
log(vl®v2®vg):v1®v2®vg — 5(’01.’02@1)34—’01@1)2.1}3)4—5’01.’02.1}3.
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15.3 Nested sums of non integer order symbols

By Proposition 41, given a symbol ¢ in P®¥ the interpolating symbol P(c) lies in Pe+LA+1 4 pOAt+L
It follows that the discrete sum P(o)(N) = P(0)(N) has an asymptotic behaviour for large N given
by finite linear combinations of expressions of the type (12.80) with & replaced by k+ 1 and a by a+1
or 0.

Picking the finite part, for any o € P*

* we define the following cut-off sum:

oS N
ZU =1y P(0)(N) =Py Z o(k), (15.143)
0 k=0

which extends the ordinary discrete sum o~ defined on L'-symbols. If o has non integer order, we
have 0% 0 = fpy oo Sopy (k) for any integer K, so that S0 0 = fpy_.cQ(a)(N).

With the help of the interpolation map described in Proposition 41, we can assign to a tensor product
0= 01®---®0y of (positively supported) classical symbols, two log-polyhomogeneous symbols defined
inductively in the degree k of the tensor product, which interpolate the nested iterated sum

Z o1(ny) - ox(ng) = o1 P(- S Oh_2 P(Uk_l P(Uk))...),

0<nEp<ng_1<---<n2<n

Z o1(ny) - ox(ng) = o1 Q( S OL_9 Q(ok_l P(ok))...).

0<n<ng_1<---<na<ni

Theorem 16 [MP2] Given o; € P49, a; €C,i=1,...k, setting o := 01 @ -+ @ oy, the functions &
and o' defined by:

0 i=o0 ﬁ(- e ?(Jk,l ﬁ(ak))...); o =0 @( C e Op_o @(Jk,l @(Uk))) (15.144)

which interpolate nested sums in the following way:

5(ny) = > o1(n1)---op(ng) Vni e N,
0<np<ng_1<--<na<ng
5/(17,1) = Z Ul(nl)---ok(nk) Vni € IN,

0<np<ng_1<---<nz<ni

both lie in P**~1 as linear combinations of (positively supported) symbols in P+ Faiti=Li=1 4 ¢
{1,...,k}.

On the grounds of this result, we define the cut-off nested discrete sum of a tensor product of (positively
supported) classical symbols.

Definition 21 Foroy,...,0, € P*Y and o :=01 @ --- @ 0}, we call
nested nested, N
S 0= Fn) =ty P, 10Dy,
< ne IN <

the cut-off nested sum of o1 ® - -+ ® oy, where, for any positive integer N we have set

nested, N

Z 01 Qoy = Z o1(n1)---ox(ng) = P(c)(N),

0<ng<---<n1<N

with the notations of (15.144).
The strict inequality version is defined by:

nested nested, N

—Z UZZX 5/(n)=pr_,OO—Z 01 ® - ® o,
< <

ne IN
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where, for any positive integer N we further set:

nested, N

Z o1 Q0 = Z Ul(nl)"'Uk(nk):Q(gl)(N)

0<nE<---<ni1 <N
with the notations of (15.144).

Proposition 42 Given symbols o; € CS. .( IRd) with order a;, the index © varying from 1 to k+1 and
provided '
a,y(l)—i----—l—a,y(i)—i—igé Ny, VveXpi, ViE{l,"',k-‘rl},

we have:
nested
S (1@ ®0k) x (Ohi1 @+ ® Ok 1)
<
nested nested
= [ e el D owne®@ou|. (15.145)
< <
Similarly,
nested
S (O1® - ®0k) xy (Ohi1 ® @ Okp1)
<
ested ested
= —Z Ul®"'®0k> —Z Uk+1®"'®0k+l> . (15.146)
< <
Proof:

1. We first observe that stuffle relations hold for finite nested sums. Let us prove this statement for
the weak inequality case. We want to show that

nested, N
Z (0'1®...®0'k)*7 (O'k+1®...®o'k+l)
<
nested, N nested, N
= Y @@ Y k@ ®oky |, (15.147)
< <

To do so, we partition the domain:
Pk,l = {m > e >N >0} X {nk+1 > > NEgg >O}C (IN—{O})kJrl
into:

Py = H P,

memixsh(k,l)

where the domain Py is defined by:
Pr ={(n1,...,n11) [ N, > Ny, if m > p and m,, # 7, and ng,, = n, if m, =}
As we must replace strict inequalities by large ones, let us consider the “closures”

Pr={(ny,...,n541) [ Nx,, > Nx, if m > p and n, = n, if 7, = mp}.

' This holds in particular when all the partial sums of the orders a;’s are not integer valued or Re(a;) < —1 for any
ie{l, -k}
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which then overlap. By the inclusion-exclusion principle we have:

Po= I v ] P~ (15.148)

0<r<min(k,l) mEmixsh(k,l;r)
where we have set:
Prypi={n1 > >np >0} x {ngs1 > >npyy >0} C (IN— {0}

Each term in equation (15.148) must be added if r is even, and removed if r is odd. Considering
the summation of 01 ®- - -® o4 over each Py, this decomposition immediately yields the equality:

> o1(n1)-- - oi(ng) > Oha1(t1) -+ Okt (Mky1)

0<n,<---<ni1<N 0<npp<-<ngpp1<N
N ,nested
= > > (15.149)
< wemixsh(k,l)

where 0" =07 ® - ® JILFT is the tensor product defined by:

T
05 = ®ic{1,....k+l}, m(i)=50i-

The stuffle relations (15.147) are then a re-writing of equality (15.149) using the commutative
algebra (V,e). Taking the limit as N — oo provides the second statement of the theorem. The
proof is similar for the strict inequality case, using the domains P, rather than the “closures”
Py. As there are no overlaps the signs disappear in the formula (15.148).

. Stuffle relations for the cut-off nested sums are obtained by taking the finite part in (15.147) as

N — oo. Since
nested, N

> o1@--®a,=P@E)(N)

is interpolated by a linear comination of symbols in PatFaiti=Li=1 ¢ f1 'k} and
ZeSted’N Op11®- @0y is interpolated in a similar manner by a linear combination of symbols

in PartrtFasHi=Li=10 5 e 1.1}, the asymptotics of the r.h.s of (15.147) as N — oo in-
volve powers N1 T FaitariitFar;+i+i=m with m € INg. Coefficients of such powers of N in
the expansion can only contribute to the finite part when a1+ - -+a;+ag1+- - -+ar;+i+j € INp.
In all other cases we have

nested, N nested, N
prHOO E 0’1®...®0'k g o'k+1®...®o'k+l
< <
nested, N nested, N

= prHOO Z O'1®..~®O'k prHOO Z Jk+1®...®ak+l
< <

The stuffle relations (15.145) then follow from (15.147) by taking the cut-off limit as N — oo on
either side.
A similar reasoning yields (15.146).

15.4 Nested sums of holomorphic symbols

The results derived in Theorem 10 extend to log-polyhomogeneous symbols. We state this generali-
saiton in the one dimensional context needed here, but it also holds in higher dimensions. We provide
a proof which although similar in the spirit of the one of Theorem 10 since it uses the Euler-Maclaurin
formula, is simpler because we are in dimension 1.
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Proposition 43 Given a holomorphic reqularisation R : o — o(z) on P**, for any o € P**, the

map
Z 7[13 o(z) = > o(2)

is holomorphic for any o € P*F.

Consequently, the map z —>~0(z) is meromorphic with the same poles (of order < k+ 1) as the map
z = fr 0(2). These poles lie in the discrete set o' ({=1,0,1,2,---}) whenever o(z) is a holomorphic
family of order o(z).

Proof: Let 0 — o(z) be a holomorphic perturbation in P**. By Proposition 41, the difference
f}R 0(2) =3 0(2) = oy oo (P(o(2))(N) = Plo(2))) (V)

is a holomorphic expression since P(o(z)) — P(0(z)) is a holomorphic symbol. On the other hand,
the map z — fo(z) = fpy_oP(0(2))(N) is meromorphic with poles of order < k + 1 in the discrete
set a1 ({—1,0,1,2,---}) where a(z) stands for the order of o(z). Thus, the same property holds for

ze—=Y0(z). O

Let R be a holomorphic regularisation on CS..o ]Rd), and the associated holomorphic regularisation
6*oR (see (14.124)) on the tensor algebra 7 (C'S. ¢ ( IR?)) which we saw was compatible with the shuffle
product. Let us twist 0" o R by Hoffman’s isomorphism to build another holomorphic regularisation
[MP2] 12

(5* o 7@) ‘= expo (5* o 7@) o log,
on the tensor algebra T (CSe..(IRY)), which is compatible with the stuffle product:
(5* oﬁ) (0 %o 7) = (5* oﬁ) (0) %o (5* oﬁ) (r) Vo,reT(A)), (15.150)

where e stands here for the ordinary product - or the opposite of the ordinary product.
The following induced regularisation

R(01® - @0ok)(21,- ,2k) = expoRolog(o1 @ - @ o) (21, -+ ; 2k) (15.151)

is therefore compatible with stuffle relations after symmetrization'? in the complex variables z; :

(ﬁ*(a o r))sym - (7@*(0) o 7@*(7)) Vo,7 € T (A), (15.152)

sym

where the subscript sym stands for symmetrisation over all the complex variables zq1, -+, zp4; if o is
a tensor of degree k and 7 a tensor of degree [.

Remark 17 Note that e.g. when k = 2

R*(01 xe 02)(21,22) = R(o11109)(21,22) — %R(O’l e 09)(21) + %R(Jl)(zl) e R(o1)(z1)
= R(o1)(z1) ® R(02)(22) + R(02)(21) ® R(01)(22)
— %R(O’l 0 02)(21) + %R(Jl)(zl) e R(01)(z1)

— (7@(01) *e R*(ag)) (21,22)

whereas

R*(Ul *eo 02)(2’1,22) 75 R(Ul)(zl) *e R(O’g)(ZQ)

and

(R*(01 %0 02)(1,22)) = (R(01)(1) % R(02)(22) )y -

sym

20ur notations slightly differ from those of [MP2] where R* stands for (6* o R)*.
13This later compels us to choosing a symmetrised evaluator at zero.
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Setting 21 = -+ = zp4; = 2 in (15.152) yields back (15.150) so that (15.152) can be seen as a polari-
sation of (15.150).

Theorem 17 Let R : 0 — o(z) be a holomorphic regularisation procedure on CSC,C(IRd) such that
o(z) has affine order a(z) = —qz + a(0) with ¢ > 0.
For any 0; € CSe.o(IRY),i =1,--- |k, with orders a;,i =1,--- ,k,

1. the maps

nested

(217...7z;€)»—>—z ﬁ*(01®...®0k)(217...72k)
<

and
nested

(21, 2k) = > R (01® - ®@0p) (21, 22)
<

are meromorphic functions in several variables with poles on a countable set of hyperplanes

zj1—|—~'~—|—zji:ajl+.“+qaji+l_n, ne N, (15153)

of order i, amongst which the ones passing through zero:

Zq_(l)_|_..._|_27_(i):()7 ie{l,---,k},TEEk-

2. The following identities of meromorphic functions hold for symbols o411 € CSC,C(le) of order
ik with © varying from 1 to I,

nested
S (01(z1) @+ @ o(2k)) - (Ok41(2h11) ® -+ @ Ohp(2h41))
<
nested nested
= —Z 0'1(21)®"'®0'k(2k) —Z UkJrl(ZkJrl)®"'®Uk+l(zk+l) , (15.154)
< <

and similarly with strict inequalities

nested

> (01(21) ® -+ @ o)) *— (k41 (2h41) ® - @ Ohpr(2k41))

ested nested
= D ()@ Uk(zk)> S okr1(2ri1) @ @ Oppi(zrar) | (15.155)
< <

where as before “sym” stands for symmetrisation in the complex variables.

3. Provided
a7(1)+-~'—|—av(i)—|—i§§%+, Vy € Yg, ViE{l,-~-,k+l}

(in particular the partial sums of the orders are non integer) then (15.154) and (15.155) hold as
identities of holomorphic functions in a neighborhood of zero, which when evaluated at zero, give

back (15.145) and (15.146).
Proof: The proof goes as in the continuous summation case (see Theorem 14).

1. The nested cut-off sum

nested
—Z 01(2’1)®"'®0k(2k) 225(21,--- ,Zk),
<
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where we have set
oz, ,2,) = 0’1(21)ﬁ(' "kaz(zkfz)?(kal(qu)ﬁ(ffk(zk)))---)7

is a linear combination of ordinary cut-off regularised sums of symbols in P1(z1)++ei(zi)+i—1,i-1
where «;(z;) is the order of o;(z;). Applying Proposition 43 yields the anounced pole structure.

2. Applying (15.145) to the symbols 0;(z;) := R(0;)(z;) we have:

nested
S (01(z1) @ - @ o(2k)) - (Ok41(2k11) ® -+ @ Oy (2h41))
<
nested nested
= —z: o1(z1) @+ ® ox(2k) —z: Opt1(Z41) @ - @ o1 (241) | s
< <

whenever oy 1y (2y1) + -+ + @y (2y0) +1 ¢ No Vy € Xpyy, Vie {1,---,k+1}. By the first
part of the proof, both sides of the equality are meromorphic maps with poles satisfying the
above requirement so that this equality holds as an identity of meromorphic maps, which proves
(15.154). The other identity (15.155) is proved similarly.

O

15.5 Nested sums of symbols renormalised via evaluators

Given a holomorphic regularisation R which takes a symbol o to a symbol R(c)(z) with holomorphic
order a(z) = a(0) — gz for some positive real number ¢, we infer from Theorem 17 that the maps

nested

(Zla"' ,Zk)|_>o'1®...®o—k|_>_z 73,*(0'1®"'®0'k)(21;"'72k)
<

and
nested

<
defined on the tensor algebra of positively supported classical symbols on IR, takes its values in the
algebra LM (C*) (introduced in (11.77)) of meromorphic functions with linear poles at zero given by
2yt oot zra =0 VT EXE, Vi€ {1,---,k}.

We set the following definition which extends, in the one dimensional case ', the regularised discrete
sums defined for classical symbols in (9.64).

Definition 22 Let R : 0 — o(z) be a holomorphic regularisation procedure on P** such that o(z) has
affine order a(z) = —qz + «(0) with ¢ > 0.
Given a renormalised evaluator A at zero, we set for any o € P**

R,A
Z o:=A (z HZR(O’)(Z))
Rd

and for any o; € P*0, e {l,--- k}

nested,R,A nested
_Z 01® Qo :=A (217"'7Zk)'_>_z R(01®~~®0'k)(21,~-~,2k) s
< <

and similarly in the strict inequality case:

nested, R, A

nested
_Z 01® @0k 5—A<(21,"'7Zk)'_>_z R(Ul®~'~®0'k)(21,~-~,Zk)>-
< <

14This could be extended to any dimension.
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As in the case of continuous sums, we build a character on the tensor algebra 7° (’P*’O). We first need
a technical result.

Lemma 14 Let R : 0 — o(z) be a holomorphic regularisation procedure on P*° such that o(z) has
affine order a(z) = —qz + «(0) with ¢ > 0.

The map
UR.T (P*’O) —  LMp(C™)
nested ~
QR0 = Y RO D0y (15.156)
<
satisfies the following identity of meromorphic functions. For any symbols o1, , 0k in CSc.c.( IRd)

[UR (01 @ @ 0p) %~ (Okt1 @ -+ @ Tp41))]
= [VR(01® - @ok) e U (0431 ® -+ @ Tpp1)]

sym

(15.157)

sym ’

where the symbol e was defined in (?7) and where the subscript sym stands for the symmetrised ex-
pression in the complex parameters z;’s.
Similarly, the map

VRT (P0) = LMo(C™)

nested
M@ @y = Y RY(01 @ @ o) (15.158)
<
satisfies the following identity of meromorphic functions. For any symbols o1, -+ ,0p4; in CSe.c.( ]Rd)

[\IJ’R (61 @ @0k) *(Op41 ® -+ ® Uk?-’rl))]sym

[‘IJ’R (01 ®- - Qo) @U'R (k1 ® - ® O'k+l)] (15.159)

sym ’
Proof: By (15.154) we have

nested

3 (75*(0'1 ® - ®@ok) (21, - 7Zk)) . (ﬁ*(UHI ® - ® o) (Zsts - ,Z,Hl))]

ested ested
— [ _Z R*(0'1®"'®0-k7)(217'”7Zk)> _Z R*(O'k_;’_l®"'®0k+l)(zkr+la"'7Zk7+l)>‘| .
< < sym

from which we infer (15.157). A similar proof yields (15.159). O
The following statement yields renormalised nested sums which satisfy stuffle relations.

Proposition 44 Let R : 0 — o(z) be a holomorphic regularisation procedure on P*Y such that o(z)
has affine order a(z) = —qz + «(0) with ¢ > 0.
Given any symmetrised renormalised evaluator A at zero, the map:

PRA (T (P0) %) — C (15.160)
nested R, A
1R Qo _Z 01 ® - R 0oy
<
defines a character i.e. for any symbols oy, - ,0py; in P*0
nested R, A

> (1® @ 0ok) * (Ohy1 @ ® Oppr)
<

nested R,A nested R,A
= —g o1Q - Qog | - —§ Ok41 @ - @Ok |
< <

with Erfsde’A replaced by Eieswd R and *_ by *y.
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Proof: This follows from applying the evaluator A on either side of (15.157) and (15.159) using the
fact that

A(f) = A(fsym) Vfe EMO(COO)

since A is symmetric. O

15.6 Nested sums renormalised via Birkhoff factorisation

As in the case of continuous sums, an alternative method to renormalise is to consider the map §* o U™,
The following statement is a straightforward corollary of Lemma 14.

Proposition 45 Let R : 0 — o(z) be a holomorphic reqularisation procedure on CSe ( IRd) such that
o(z) has affine order a(z) = —qz + «(0) with ¢ > 0.

The map
o WUR (T (P), %) — (Merg(C™),)
nested ~
18- Qo - S (5*oR*) (01® - @ op)(2) (15.161)
<
and
§* o W' R (T (P*0),%-) — (Merg(C™),-)
nested
1B @Ok — S (5*075*) (01 ® - ®op)(2) (15.162)
<
are algebra morphisms, i.e. for any symbols a1, , ok in P*° we have
(60 UR) (01 @+ ® k) *— (Ohs1 @+ @ Tpqr))
= ("0 UR) (o1 @ - ®op) (60U (041 @ @ Thpr) (15.163)
and

(8" 0 W' R) (01 @ @ 0p) oy (Ohy1 @+ @ Opyy))
= (oW R) (1@ - ®@op)- (0" 0V T) (041 @+ ®@0ppi), (15.164)

where - stands for the ordinary product of functions.

We know by results of Hoffman, that the tensor algebras (7 (P*°),x_) and (7 (P*°),x,) equipped
with the deconcatenation coproduct:

k
A(Ul®"'®0k) ;:Z(gl®...®gj)®(0'j+1®...®O'k)
j=0

inherit a structure of connected graded commutative Hopf algebra [H1]. Using the convolution product
* associated with the product and coproduct on (7 (P*?),%_) (resp. (7 (P*?),*,)), we can implement

a Birkhoff factorisation to the map ((5* o \I/R) (resp. ((5* ) \II'R)) as in the Connes and Kreimer setup
([CK], [Ma])
(5* O\I/R) — (5* O\IJR)J’_ " (5* O\IJR)_

(resp.
(6* O\IJIR) _ (5* O\IJIR)+ * (6* O\IJIR)_)

associated with the minimal substraction scheme to build a character
(6* o \IIR)Jr (0) : (T (P*’O) ,*_) — C,

(resp.
(00 W'R) (0): (T (P*?),%4) = C).
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Proposition 46 [MP2] Let R be a holomorphic reqularisation which sends a symbol o to a symbol
o(z) with order a(z) = a(0) — q z for some positive real number q. The map
YRoBirk . (T (CSC,C(IRd)) ,*_) - C
1@ Qo = (070®), (0)(01 @ ®oy)

1pR,Birk

defines a character. In other words, satisfies stuffle relations:

wR,Birk ((UI R ® gk) *_ (Uk-i-l (ORI Uk—i—l))
_ 1/}7Z,B1rk (Ul®"’®0k) 1/}73,B1rk (U'kJrl ®"'®Uk+l)

and similarly for ' BYK with «_ replaced by . .

This yields an alternative set of renormalised nested sums of symbols

nested,R,Birk
_ E Ul@"'@)ak1:1/1R’Blrk(01®"'®0'k)
<

and
nested,R,Birk

- Y n®-®0 =90 e 0 o)

<
which obey stuffle relations:
R,Birk R, Birk R,Birk
S (1@ @oR)x (Or1 @ Qopy) = [ D 1@ @0k |- [ D o1 @ Dok |
< < <
(15.165)
and
R,Birk ,Birk ,Birk
> (018 @0p) Ky (Ohp1 @ D oppr) = [ D al®-~®ak>- > o1 @@ ok |
< < <

(15.166)

15.7 An algebra of symbols

The above constructions carry out to the following subalgebra of P*:°.
Since we want to consider both zeta and Hurwitz zeta functions, let us first observe that for any non
negative number v and any ¢ in P**, the map & + t%o(£) := o(€ + v) defines a symbol in P**.

Let A be the subalgebra of P*¥ generated by the continuous functions with support inside the interval
10, 1] and the set

{feP*Y Jwel0,4+00[,3s € C, o(&) = (£ +v)~*° when & > 1}.

Consider the ideal A" of A of continuous functions with support inside the interval ]0, 1[. The quotient
algebra A = VZ/N is then generated by the elements o ,, where oy, is the class of any o € A such
that o(&) = (£ +v)~*° for |{| > 1. For any v € IRy the subspace A, of A generated by {os ., s € C}
is a subalgebra of A. It is therefore natural to equip A with the following holomorphic regularization
on an open neighbourhood € of 0 in C:

R:A — Holg(A)
g = (Z’_’(l_X)U+XUs+Z,v)

where y is any smooth cut-off function which is identically one outside the unit ball and vanishes in a
small neighborhodd of 0.
We choose the product e as the opposite of the ordinary product, so that we have:

ced’ =—c0' V(o,0') €A% resp. 0y @0y = —Osisw YV (0sw,05.0) € A%
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Let W be the C-vector space freely spanned by sequences (u1,...,uy) of real numbers. Let us define
the stuffle product on W by:

(Upy ooy up) * (Upg1y e ey Upr) = Z (-1)" Z (Ul Uy p)s (15.167)

0<r<min(k,l) memixsh(k,l;r)

u;’ = E U

i€{1,. k) (i)=3

with:

(the sum above contains only one or two terms).
The map u — oy, from W to T(A,):

O (ur,eeup;v) = Ougjo @+ @ Ougio
induces a stuffle product on 7 (A,):
Ous;v *— Ouw/jv = Oyxu/jv-

The same holds with x_ replaced by x4 provided we drop the signs (—1)" in equation (15.167) defining
the stuffle product on W. _
As before, we twist the regularisation R induced by R on 7 (A,) by a Hoffman isomorphism to build

a twisted holomorphic regularisation R* in several variables which satisfies

(ﬁ'* (Tusw) *— R* (Uu’;v)) = (ﬁ'* (Uu*u/;v)) ym’

sym

and a twisted holomorphic regularisation §* o R* in one variable compatible with the stuffle product:
(6* © 75’* (Uu;’u)) *_ (5* o 75'* (Uu’;v)) = 6* o ﬁ* (Uu*u’;v)a

and similarly with x_ replaced by *.

15.8 Multiple zeta values renormalised via evaluators

Let Q be an open neighbourhood of 0 in C and let R : 0 — {o(2)}.eq be the holomorphic regularization
procedure on A previously introduced. The multiple Hurwitz zeta functions defined by:

C(Sl,---,Sk;’Ul,---,'Uk) = \I/R(O.Slq'l)l@.'.@o’skavk)’

- R

C(S1yevvy Sk Vs ey vg) = U (05, 0 @ @ 0sy 00 )

are meromorphic in all variables with poles'® on a countable family of hyperplanes s; + --- + s; €
| — 00, j] NZZ, j varying from 1 to k. When vy = -+ = v, = v, we set

C(81yvey Sk 1) :=C(S1,5- 5 8k5 V1, -5 0k); C(S1,..., 8k V) ::Z(sl,...,sk; Viyene, Uk)

in which case they satisfy the following relations :

(Clux_u'; v))sym = (Zg(u; v) Zg(u’; v)) (15.168)
sym
with the stuffle product x_ defined by (15.167), and:
(CF (uxy s v))sym = (¢ (uv) ¢F (U5 U))Sym , (15.169)

with the stuffle product x4 defined by (15.167) with signs (—1)" removed.
The renormalised multiple Hurwitz zeta values derived from a symmetrised renormalised evaluator £

on LMy(C>):

£ . L R,E
Co(81y ey Sk V1, oy 0) = U (0,40, @ @ Oy i),
=& IR.E
C (817-"7'9/@;”17"'7”19) = U (Usl,v1®"'®osk,vk)
5When k = 2 and v = --- = v; = v a more refined analysis actually shows that for some any negative real number

v, poles actually only arise for s1 = —1 or s1 + s2 € {—2,-1,0,2,4,6,---}.
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denoted by (™€ (s1,...,s%; v) and ZR’g(sl, ..., 8k; v) when v; = -+ = v, = v, satisfy stuffle relations
in that case: . . .

¢ (ux_u'y0) = (uv) ¢ (vsv) (15.170)
and:

CE (e w5 v) = CE (uv) CE (5 0). (15.171)

One can show along the lines of the proof of Theorem 10 in [MP2] that enormalised multiple zeta
values at non positive arguments obtained this way with v rational, are rational linear combinations
of Bernoulli numbers, and hence rational numbers.

15.9 Multiple zeta values renormalised via Birkhoff factorisation

Renormalised multiple Hurwitz zeta values derived from a Birkhoff factorisation:

CBirk(817 MR ] Skﬁ 'Ul, AR 7’0113) qj’R"Birk(o-Sl,vl ® e ® Usk,vk)u
—Birk R, Birk
C (Sla"'vsk;vla"'avk) = ‘IJ/ (0517U1®"'®05k7’0k)
denoted by ¢B'™(sy,...,s1; v) and ZBirk(sl, ...y 8k; v) when vy = -+ = v, = v, satisfy stuffle relations
in that case: —Birk ’ —Birk —=Birk , ,
C o (uxusv)=C (wv)¢ (W) (15.172)
with the stuffle product x_ defined by (15.167), and:
B (g /s v) = B (u;0) B (W5 0). (15.173)

with the stuffle product x; defined by (15.167) with signs (—1)" removed.
A striking holomorphy property arises at non positive integer arguments [MP2] after implementing the
diagonal map 9.

Proposition 47 At non positive integer arguments s;, and for a rational parameter v, the maps
z R (Os10® @ 0s4,0) (2)

and »
Z = 7// (‘751,12 Q- ® USk,v) (2)

are holomorphic at zero.

Consequently,
Birk : Birk
C " (317 <oy Sk U) = Zhi%va " (0817U1 @ Uskﬂlk)
and Birk
—=DbDIr . i
¢ (517 <o Sk ’U) = ;ll»% ¢IR7Blrk(UShv1 Q- O.Skvvk)'

Explicit computations show that renormalised double zeta values at non positive integers obtained
by two different methods — using the symmetrised renormalised evaluator evy ™™ or a Birkhoff
factorisation— coincide. However the table of values for depth 2 derived in [MP2] differs from the
one derived in [GZ] using a heat-kernel type approach, with which it however matches for arguments
(a1, az2) with a1 + az odd and ag # 0 and for diagonal arguments (—a, —a).
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16 Renormalised multiple sums of symbols with conical con-
straints

The convergent nested discrete sums of positively supported symbols we previously investigated can
be interpreted as multiple sums with conical constraints:

Z o1(n)--ok(ng) = Z o1(ny) - ox(ng)

0<nE<--<ny (n1,-+ ,ny ) ECIZF
o0 o0
= E E (01®---®Uk)0A(n1,---,nk),
n1=0 ng=0

where C' is the cone 0 < xf < --- < x1 and A is the upper triangular k£ x k matrix

1 1 ... 1

0 U |
A=

0O --- 0 1

We investigate discrete sums of symbols associated with general convex cones in IR’}F.

16.1 Convex cones

We consider the filtered vector space IR™ = U, R* with standard basis {e1,--- , ek, -} and stan-
dard orientation.

Definition 23 A closed (resp. open) convex cone C in R” is a closed (resp. open) subset of R*
stable under any nonnegative combination of elements of the set. The rank of a cone is the dimension
of the linear subspace spanned by the cone.
The convex cone C' together with an ordered set of generators U := (v1,--- ,vy) withv; € R* is denoted
by

(C, ’l_f) = <’U1, ce ,’UJ>+.
According to whether the cone is closed or open, we take non negative or positive coefficients in the
linear combinations.
Closed (resp. open) convex cones (C,T) are in one to one correspondence with k x J matrices

k

k
A = (aij)1<i<ki<j<g <= Ca = (Z ;1€ - 7ZaiJei>+~
i1 i=1

A subdivision of a closed cone is a finite collection of cones

e which contains the faces of any cone in this collection,
e such that the intersection of two elements of the collection is a face of both elements,

e and such that the cone is the union of the elements in this collection.

A cone C is simplicial if it is spanned by independent vectors ¢ = (v1,---,v;) in which case the
matrix A corresponding to (C,¥) lies in GL;(@).

Remark 18 Any cone admits a subdivision into simplicial cones so that in practice we often consider
simplicial cones.

A cone is pointed if it does not contain a straight line; any cone can be subdivided into pointed cones.
A cone is rational if it is spanned by vectors in @Q", in which case the matrix associated with a given
set of generators v; € Q*, j = 1,---,J has rational coefficients. We simply call a pointed rational
convex cone a cone. Such a cone is smooth if it is spanned by part of a basis in Z.

Example 21 We call open (resp. closed) Chen cone of dimension k the k-dimensional smooth
simplicial open (resp. closed) cone 0 < xy, < -+ < x1 (resp. 0 < my < --- < x1) associated with the
upper triangular matriz (17.180).
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16.2 Multiple zeta functions associated with cones
Theorem 18 Given a cone C C ]Ri, the map
g’;:(817...78k),_) Z x;Sl,..x;Sk
FeCrzk

is holomorphic on the intersection of half planes Re(sry + -+ s7)) > 14, i = 1,--- K, 7 € Xy,
where the r;’s are postive integers depending on the shape of the cone.
It extends to a meromorphic map

mer
1

S Z xfsl-~'xlzs" = Z Hf,m(sla"' ;Sk)
Lls) -~ Tlse) TED Hf:l [(sry + - F 87 = 75) - (8r) + -+ 8000y — i+ )|

FeCruk
with poles §:= (s1,--- ,s1) € CF on a countable set of affine hyperplanes Sr)yt s —ri € —No
with i varying in ={1,---  k} and 7 in .
Here the multiindex m = (mq,--- ,my) lies in INIS and H: m, T € X1, 15 a holomorphic map on the

domain ﬂle{Re(S(T(l) +o A sey) Fmi >t

Remark 19 Note that a permutation T € ¥j, on the arguments s; boils down to changing the cone C
to T, 1C. =&, (x,—11),-  Tr—1)) € C} which also lies in IRi

Proof: For Re(s;) sufficiently large we write

E —381 —Sk
:Z:‘l ...:Z:‘k

Fecrmk
1 /OO s1—1 /OO sp—1 -k P T
= — dey e’ - dey €;F e Lvi=1 T
F(Sl) o 'F(Sk) 0 ! 0 k fe;ﬂk
+
T [ e B e
= — dey et - dey, €;F e~ (6
g ) [ ¥
v +

k J

1 /OO /Oo si—1 -1 -2k e
e dey - -- de €St vj,€) " h(€) e &i=1¢
I(s1)--T(sk) Jo ' 0 * };[1 ‘ };[1< ) ©

for some entire map h. Let us decompose the space Il?{]fr of parameters (e1,---,€) in regions D,
defined by €,(1) < -+ < e;(x) for permutations 7 € .

This splits the integral [~ dey --- [ dep, 1, e P T, (v, €) "t h(e) e~ =1 % into a sum of inte-

i=1 %
grals [}, Hle e T (v, ) P hie) e i€ dey - deg.
Let us focus on the integral over the domain D given by €1 < --- < €g; the results can then be trans-
posed to other domains applying a permutation s; — s;(;) on the s;’s as a result of the above remark.

Setting €; = tj, - - - ; on this domain introduces new variables t = (t1, -+ ,tr) which vary in the domain
k—1
A= []l0,1] x [0,00).
i=1

Since v; = Zle aje; #0 Vje{l,--- k}, for any j € {1,---,J}, we can define i; € {1,--- ,k} to
be the largest index ¢ such that a;; # 0. Performing the change of variable (e1,--- ,€x) — (t1,--- ,tx)

k

in the integral, which introduces a jacobian determinant [];_, t;fl, we have

ij—1

k
(vj,€) = E Q;j € =t -ty E Qijti;—1 -t + Qi
i=1 i=1
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We can therefore write the sum as follows:

—81 — Sk
E xl PPN xk

zecruh
1 /OO s1—1 /OO sp—1 —(&,T)
= o0 dep ]t - dey, €;F e \&F
T(s1)---T(sk) Jo ! o k feczr:m
k
1 0o 1 1 k k J ~
S — dtk/ dt1-~-/ dte—r | [t Tt t) [ te )t A(2)
[(s1)---T'(sk) /0 0 0 E E H
1 ) 1 1 k J ~
S dtk/ dtl---/ dte s TTE+ 7 T e 4,) " )
F(Sl)"'r(sk)/o 0 0 71;[1 ! Jl;ll !

k
1 -
_ | | gsittsi—ri—l o g

where we have set

ij—1 -1

J

~ _ k it

h(t) = e Xi=te tlh(tk"'tl,tk"'tQ,"',tk)H Zaijtijfl"'tl‘Faijj
j=1 \ i=1

and where the 7;’s, i = 1,--- , k are positive integers depending on the shape of the matrix A = (a;;)
via the integers i;,7 = 1,---,J. Integrating by parts with respect to each ¢;,% = 1,--- , k introduces
factO{s ST Ts T Ji € INy when taking primitives of ¢;* ++si=mi—1 a4 differentiating h(t_> Note
that h is infinitely smoothing in the domain A and that the integral in ¢ converges at infinity since
the expression h(f) involves exponentials e~ & i=1 ki,
Summing the various integrals over the regions D., 7 varying in Y, which amounts to summing over
D integrals with s; replaced by s.(;), we thereby build a meromorphic extension Efecm’; Hle x; %
to the whole complex plane as a sum over permutations 7 € ¥y, of expressions:
1 R N )

F(Sl) . F(Sk) Hi:l ((ST(I) + . + ST(Z) — /r'i) . (S‘r(l) _|_ . + ST(’i) -7 _|_ ml))
where the boundary terms on the domain A are produced by the iterated m; integrations by parts in
each variable ¢;.

k tST(1)+---+ST(i)—Ti+mi ﬁ-(,—mlererk)(a

Here we have chosen the m;’s sufficiently large for the term |’ A | g2
to converge. The boundary terms are of the same type, namely they are proportional to

+ boundary terms)

N1y f o~
[ Tl 7o et it g

i=1"1

k
[Timi ((sr) + 80y = 70) -+ (8r1) + - + 87y — 70 +m))

for some domain A’ = 1‘[{';11[0, 1] x [0, 00] for some I"' < I or A" = 1‘[{';11[0, 1] for some I' < I and
some non negative integers m; < m; with at least one mj; < m,.

This produces a meromorphic map which, on the domain N, ex, NY_; {Re(sr(1)+ - -+5r@))—ri+m; > 0}
(here m = (mq,--- ,myg) is a fixed multiindex of non inegative integers) is a sum over permutations
T € X, of expressions

1 H:mlar, - ag)
F(Sl) ‘e F(Sk) Hle ((ST(I) + 4 ST(l) — 7’1-) e (ST(l) + - 4 ST(i) — T —+ mz))

where H: s is a holomorphic map on the domain ﬂle{Re(sT(l) +se@y) Fmg > i

It therefore extends to a meromorphic map on the whole complex space C¥ with simple poles on a
countable set of affine hyperplanes {s-(1) + -+ 5. — i € —Ng}, (with i varying in {1,---,k} and
7 in ¥j) and where the r;’s are integers which depend on the size k x J of the matrix and on its shape
but not on the actual coefficients of the matrix. 0O
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Example 22 For Chen cones we have J =k and v; = e1 + - -+ e; so that with the notations of the
proof, i; = j and s; =i and the poles lie on hyperplanes s (1y+---+s;—i=—l, 1=0,-- ,m;i=
1,---,k, 7 €X. If Re(s;) > 1 for any i € {1,--- ,k} then there is no hyperplane of poles passing
through 0.

More precise results on the location of the poles [MP2] can be derived on direct inspection of these sums
on Chen cones using an Fuler-MacLaurin formula.

16.3 Cut-off conical sums of symbols

We now specialize to symbols with irrational order, which have the property that the sums of their
orders is not an integer that plays a role in the following. From Theorem 18, we derive the following

property.

Lemma 15 Let C C ]R]fr be a cone and si,--- ,s complex numbers. Whenever the partial sums
Sj, + -+ s, are non integers for any {j1,--- ,ji} C{1,---,k}, then the map
mer k
(21, . 7Zk) — Z HI;(S¢+Zi)
Fecrmk i=1

s holomorphic on the complex plane.
This holds in particular if the s;’s are irrational.

We can therefore set the following definition.

Definition 24 Let C' C IR]fr be a cone and sy, - -- , s, complex numbers with non integer partial sums.
We define the cut-off multiple sum with conical constraints by:

k mer k
> JJas= Y. [[=v : (16.174)
Fecrmk i=1 Fecrmk i=1 it
1—Uyb=1,""",

Remark 20 When k =1 and C = R4 we recover the zeta function at a non integer argument s as

an ordinary limait:
mer

C(s) = Z n=° = zhi% Z n= 7%,

ne4 [/

Remark 21 If C' is an open Chen cone and sj, + -+ + s;, ¢ ZZ or Re(sj, + -+ ,sj,) > i for any
{1, oaiy {1, K},

k
_Z Hxi_Si:_ Z nl_ﬁ'“nI;Sk:C(Sl?"'ask)
5€cmi i=1 0<np<---<ny
which corresponds to the multiple zeta values at (s1,- -+, sg) familiar to number theorists.

With these notations, the meromorphy result of Theorem 18 says that the map

§"—>—E xy eyt

Fecruk

provides a meromorphic extension to the whole complex plane of the holomorphic map 5~ » . crah xy e

defined on an intersection of hyperplanes.
Our aim is to extend this meromorphy result to cut-off conical sums of symbols.

Lemma 16 Let C C IRi be a cone and let s1,---, s, be complex numbers whose partial sums sj, +
.-+ + s, are non integers for any {j1,--- .4} C{1,---,k}. Then for anyip € {1, -, k}

: § —S1 _(Si0+N) —Sk __
J\;.];}Iréo — xl .. -xio .. -xk f— 0'
iecrﬂi
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Proof: By Theorem 18 and with the notations of the theorem,

_(510+N) —sp _ 1 sittsi—ri—1 7
_ . . _ 49 (i
2 " = Ty T $ 7T Ju) H ®

zecrﬂk
with
g [ij—1 -1
B = S Gttt ) T] [ 5t 5
j=1 \ i=1
independent of N. We split the product
k ’Lo 1 N
g —— = +tsig FN+si 1+ s — T7,71
HtflJr +si—ri—1 __ Ht51+ +si—ri—1 Htsl 0 0
=1 =10

For large N, the integrals in the variable t;,7 > iy converge so that integration by parts is only needed
in the remaining variables ¢;;7 =1,--- ,ip — 1. But these give rise to Gamma functions in the denom-
inator which do not involve N. Thus, the only N-dependent factor in the denominator is I'(s;, + N).
As N — oo the numerator converges since tf”N <7 for 0 < ¢; <1 to a finite quantity whereas the
denominator diverges to infinity so that the whole expression tends to 0. O

Using the Fréchet topology on classical symbols of constant order, we now extend this cut-off sum
with conical constraints by continuity to tensor products o1 ® - -+ ® o} of polyhomogeneous symbols
2 +— o(x) in P, the algebra of positively supported classical symbols on IR introduced in Section 15.

Let 01, -+, 0k be symbols in P with orders aq, - - - , a respectively, which we write according to (2.11)
Ni—1
N;
oi(x:) = Y i (@) X(wi) + 0" ()
Ji=0
= Y e e () + oM () (16.175)
ji=0
where N;,i = 1,--- , k are positive integers, 0; o,—j;,% = 1,--- , k are homogeneous functions of degree
— Jis ogNi),i =1, -+, k polyhomogeneous symbols of order whose real part is no larger than a; — N;
and where we have set c; ‘= 0ja;—j (1), = 1,--- k. Here x is a smooth cut-off function which

vanishes in a neighborhood of 0 and is identically one outside the unit interval.

We have ,

Jim JT(o: = o) (@) = @L03(w)
Ooz 1

in the Fréchet topology on symbols of constant order.

Lemma 17 Let C C ]Ri be a cone and let o1, -+ , 0K be polyhomogeneous symbols in P whose orders
ai, -+, ap have non integer valued partial sums o, +- - -+a;, for all subsets {ji,---,ji} C{1,---,k}.
With the notations of (16.175) the sequence

N—-1 N—-1

k
>~ [ltei = ot @i) = R DR T

zeormk i=1 ji=1 =1 crm 2 £0

<.

converges as N — o0.

Proof: We first observe that ECP@’; @k 2% 77 is well defined under the assumptions on the orders.
On the other hand, by Lemma 16 the sequence

N—-1
P BN k o —Ji
E : E : GGy E : Qi=1%;

Jji=1 Jk=1 cruzk
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is a Cauchy sequence which therefore converges as N — oco. 0O

On the grounds of this lemma the cut-off conical sum extends to the tensor product by linearity
and continuity and we set the following definition.

Definition 25 Let C C ]Ri be a cone and let oq,--- ,01 be symbols in P with orders ay,--- ,ay
respectively whose partial sums aj, + - -+ + oy, are non integer valued for all subsets {ji,---,ji} C
{1,---,k}. With the notations of (16.175) we define the following conical sum:

k
PO COREIEE o | CREE

gecrmk i=1 gecrmk i=1
N—-1 k
el o —Ji
= Jm (>0 Z e > 1w
Ji=1 Jr=1 feCPﬂ’iizl

In particular, this definition applies to symbols in P with irrational order.

We can now generalise the statement of Theorem 18 to symbols in P.

Theorem 19 Given a cone C C ]Ri and symbols o1, -+ , 01 in P with orders ay,--- , o, the map
(217... ,Zk),_) Z Ul(xl)xl—sl,..gk(xk)x;zk
Fecruk
is holomorphic on the intersection of half planes Zle Re(—aT(i) +2r@) > i, i =1, k, T € Xy

where the r;’s are positive integers which depend on the shape of the cone.
It extends to a meromorphic map

(2100 zk) = =y or(@) @y o) ot (16.176)
Tecrmk
with poles (z1,- - - , zx) € C* on a countable set of affine hyperplanes Zryt ot zr) —Ti € Z 0
withi=1,---k, 7€X.
Proof: As before we writec;(z1) |z;|7% = limpn, —co Z;-\f:ol choal Iy (a) and
- N—1 k k .
_Z 01 xl |£L'1| S1, .. (,Tk) |£L'k| = hm Z Z Hc . _Z foili—]i—zi
FeCrzk. 31 0  jr=0i=1 recrmk i=1

;i —Ji—zi

By Theorem 18 each of the expressions Eiecmk Hl 17 which is holomorphic on the inter-
section of half planes Zi:l Re(—ar(y + 27(3y) > 73, @ = 1,--- ,k, is meromorphic with poles on a
countable set of affine hyperplanes 2,1y + -+ 2,y — 73 € Z -1 o — Zle —ji — INg which sits inside
the countable set of affine hyperplanes 2. (1) +- - +2.)—1i € Zi:l a; — INg. Since the limit is uniform
on compact regions of C¥, it defines a meromorphic function with the same properties. O

16.4 Renormalised conical discrete sums of symbols
Let LM(C®®) := @, LM(C*) € LMer(C>®) with LM(CF) defined as in (11.76) by:

h(zi,---, zx)
[iee, (L(z1,oo s 2)™

LM(CF) = {(Zl, e 2g) h € Holy (C¥), mp € ]N}, (16.177)
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equipped with the product (11.75)

J

I
<(217"' TS HfioLi(Zla"' ,Zk)> ® | (21, ,2) — Hf1+j0L1+j(21,"' . 21)
=1

Jj=1

I J
= (21 mp) = [[fio Ltz o) [] freg o Livi(zrans - zns).
i=1 =1

Let T (P) denote the tensor algebra of the symbol algebra P equipped with the tensor product and C;
the set of cones in IRY ( C. (IRF) the set of cones in ]Ri) which is stable under concatenation that

sends a cone C' € ]Ri and a cone C' € IR’i to a cone C' e ' € IR’jfkl. We equip the direct product
7 (P) x C4+ with the induced product:

(0,C) e (c",C"):i=(c®d,Cel).
The above constructions give rise to a map on 7 (P) x C4 given by:
P:@FP x Ci(RF) —  LM(C™)
(0,C) +— Z —Z o) xy ? -op(ag) 2,
zecruh
with the following property:
®((0,C) 0 (0",C") = 2((0,C)) @2 ((0/,C")).

This property which clearly holds for large Re(z;) extends to an identity of meromorphic functions
by analytic continuation 6. Applying a renormalised evaluator (14) at zero A (which by definition is
compatible with the product &) on LM(C>) leads to a character on 7 (P) x Cy given by:

ot @FP xC (RF) — C
A
(0,C) +— —Z o1(x1) - rop(zr) =A | 27— —Z or(x)xy ? op(ak) ™ ]
TeCrk FeCruk
ie
¢A ((Uv C) b (0/7 C/)) = ¢A((07 C)) : ¢A ((0/7 C/)) )
which extends the ordinary sum: Eiecmi o1(x1) -+ - or(xg) defined for symbols o; with negative

enough orders.
Fixing the symbols o;(z) := 2% for some complex numbers §:= (s1,--- , Sk, - ), induces a map <I>{S§
defined on a cone C in Cy (IR¥) by

Dy, i CL(RF) — LM(C™)
C - 7 _Z x;(51+21) . .x;(SkJer)
Tecrzk,
and hence a character ¢2 on Cy defined on a cone C in C4 ( R¥) by

A s C+ — C

81,00,

A
C _§ : :El_Sl . ”ZE;S’“ — Fis _z : .TEl_(SH_Zl) . .II:(Sk'f‘Zk) 7
Fecrzh Fecruk

16For the necessary background in the theory of meromorphic functions in several variables, see for example [GR], in
particular the Identity Theorem in Chapter 1, Section A, or [?].
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i.e. it obeys the multiplicative property

A (CeC') = (©) - ¢ (. (16.178)

S150 5 Sk41 S1, 55k Sk+1,"" 551

The map @ is additive on disjoint unions. Indeed, for any cones C,C’ € C4(IR”) such that CNC’ = ¢
we have the following identity of meromorphic functions:

‘bsl,--- . (O U C/) _ § : Il—(s1+z1) . 'II:(Sk'f‘Zk)
FeCucC ik
_ _E : x;(51+21) » .x;(5k+2k) + _E : x;(51+21) B _x;(SkJer)
Fecrmh. FeC ik

= (1)517"' ,Sk (O) + (1)517"' Sk (C/)

Applying the evaluator A, we infer that the map gbg‘ too is additive on disjoint unions (this corresponds
to the valuation property of [BV]):

o2 (CUC) =¢2(C)+ o2 (C") VC,C" eCi(RF), with CNC' =¢ (16.179)

To the Chen cone Cj, = (e1,e1 + €2, ,e1+ -+ eg)t € C+(]Rk) and comples numbers (s1,- -, Sk)
we assign the value

-?1,"' Sk = ¢é\1;"';5k(0)'

s

Combining (16.179) and (16.178) we derive the double stuffle relations. Indeed
Cre(Cy = <61, e + 62>+ U <61 + ea, 82>+ U <61 + 62>+

implies that

(MG = b (Cr) 6h, (Ch)
?1,82 (Cl i Ol)

= b ., ((er,e1 +ea) Uler + e, e2) 1 U (e + e) )
= ¢ 5, ((ene1 4 €2)y) + Ok, o (o1 + €2, €2) 1) + Bs, o) ({1 + €2)4)
A + A + A

51,52 52,51 s1t+s2°
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17 Renormalised multiple integrals of symbols with linear con-
straints

In a similar manner to convergent nested sums of symbols we previously studied, convergent nested
integrals of radial symbols o;(&) = 7;(]¢]) can be realised as multiple integrals with conical constraints
writing:

/ 01 (€1) - on(En) dér - e
0<|€p | <<€

Ti(ry) - Te(rg)dry - -+ dry

/0<Tk<---<h

(
d7’1~-~/ dri7i(ri 4+ -+ 1) To(ri+ -+ re—1) - Te(rg) dry -+ - drg
0 0

= / dr1-~/ dri(fh ® -~ @ Tg) 0 A(ry, -+ 1) dry -+ - dry,
0 0

where 7;(r) = 7471 7;(r) and A is the upper triangular k x k matrix
1 1 1
0 1 1
A=
0 0 1

On the other hand, multiple integrals with linear constraints arise in Feynman type integrals such as,
in dimension 4:

/ / (01 ® 02 ® 03) 0 B) (€1,62) dés s
R4 R4

1 1 1
= o o wETEET G EE e T e

with 0;(§) = m for some m € IR* (which introduces a mass term) and B the 3 by 2 matrix

B =

)

—_ O =

0
1
1

an integral which converges for real numbers s;,7 = 1,2, 3 chosen large enough.
Our aim in this section is to renormalise multiple integrals of the form

/ / (Ul®"'®01)oB)(§la"'7§L)d§1"'d§L
R4 R4

for classical radial symbols o;(€) = 7;(|€]),i = 1,--- ,I on IR? and a matrix B of size I times L with
maximal rank.

This chapter which is based on [Pa4], closely follows the pattern of the previous chapter devoted to
renormalised discrete sums with conical constraints.

17.1 A linear extension of the tensor algebra of symbols

Let us first describe an abstract setup. Given

e a vector space V over IR (or maybe a Z-module),

e a linear space F(V) over K of K-valued maps on V (K is a commutative field, IR or C in
practice),
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e a linear form A : F(V) — K,

uniquely extends to a character _
AN T(F(V))— K

on the tensor algebra over F (V') (closed for the Grotendieck topology if required):
T(F(V)) = P& F(V)
k=0

equipped with the tensor product ®:
k

MA® @ fi) = H)‘(fi)-

i=1
We wish to extend it to a character on a linear extension
LT(F(V)) = @3LoLYT (F(V)),
of the tensor algebra, where
LET(FW) = {[[fioLi:VE—K, Lie(V")", fieF(V), Ic N} (17.180)
il

equipped with the following product:

k K
(H fio Li) ® HfiJrk oLitk |, Li€ (VL)* y Liyk € (VL/) .
i=1

i=1

A matrix A € gl, (V) induces a map
ia: THFWV)) — LT (F(V))
@@ fi— (i@ ® fr) oA,

and the space 7%(F(V)) is canonically embedded in £L¥7 (F(V)) via the map i = i; associated with
the identity matrix.

Remark 22 An element in LET (F(V)) can be written in different ways, for example if F(V) = K[X],
(X -Y)X+Y)=X2-Y2eT?FV)).
In certain cases

TH(F(V) = F(V).

This is the case for the algebra F (V') = Holy(V') of holomorphic germs at zero.
In this example and in the case F(V) = K[X] of polynomials in one variable, the algebra T (F(V)) is
moreover stable under linear transformations in V', so that

LT(F(V)) =T(F(V)).
In these examples,the linear form A canonically extends to a character on L7 (F(V)).

Example 23 Taking V = C, F(V) = Mero(C) leads to an algebra LMy(C>) = &2, LM(C*) C
LMer(C>) with LMo (CF) defined as in (11.76) by:

h(zi,- -, zx)
— mrp, 0
HLeg,c (L(Zlv e aZk))

equipped with the product (11.75)

LM(CF) := {(21,... %) h € Holy (C*), my € IN}, (17.181)

I J
((zla"' 7Zk)'_’HinLi(zlv"' 7Zk)> ® (Zlv"' azl)'_’HfJ'OLj(Zlv"' 721)

i=1 j=1

I J
= (2, ) = [[ o Lilzn, o) [] £ o Lazegas -+ 2kp).
i=1 j=1
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We want to work with symbols which unfortunately enjoy neither a stability property under tensor
products (a tensor product of symbols is not generally a symbol) nor a stability property under linear
transformations 17 in the variables, hence the relevance of the defintion to come which combines tensor
products and linear constraints.

Choosing V = R?, F(V) = CS.c..(IRY), leads to the following definition where the subscript “max”
stands for “maximal rank” of the matrix (Li,---, L) formed by the line vectors L;, with ¢ varying
from 1 to [.

Definition 26 Let LT (CSe.o( RY)) = 5 Linax T (CSe.o(IRY))

I
EmaXTL(C‘S’QC(]R’d)) = {(517 e 7§L) = HO'i ° Li(§17 o 7§L)7 Li € (VL)* 7rk(L17 e 7LI) =L
i=1
(17.182)
which is stable under the product:

i=1

I J
<(§17"' 7§L)'_)H0ioLi(€17"' 75[1)) ® (517"' 7§M) = HO—]OL](glu 7§M)
7j=1
J

I
= (&, &oam) = [Joio Litér, - 6) T[] oo LiGsas - s €nvmn)

i=1 j=1
since a Whitney sum of two matrices with mazimal rank, also has mazximal rank.
Remark 23 When I = L and L;(&1,- -+, &) = &, the product & gives back the tensor product.
We will need to restrict to classical radial symbols, i.e. to the algebra
CSENRY) = {o(&) = 7)), 7€ CSec(Rx0)}

and the corresponding linearly extended tensor algebra: LT (C'S224(RY)) = @3, Linax T2 (CS2I(R?))

=1

I
LnaxT1(CSFE(RT)) = {(51, &) e [[oioLitér, - €0), Lie (VE) xk(Ly,-+-  Ly) = L
(17.183)

Remark 24 The notations I and L are chosen in coherence with the motations used by physicists,
with L the numbers of loops and I the number of edges of a Feynman diagram.

Notation: Letting B be the L times I matrix formed by the line vectors (Lq,---, L), we set for
convenience:

I
(1 ®--@or)oBlér,--- &) = [[oio Lilér, -+ &) Ve, & € RY
i=1

17.2 Multiple sums of symbols with linear constraints: meromorphy
Let us now show the existence of meromorphic extensions for integrals z' — [ (Ra)* R(5)(Z) o B built

from more general matrices B, where as before R is the multiplicative (for the tensor product) ex-
tension (14.122) to the tensor algebra 7 (C'S(IR?)) of a holomorphic regularisation R. For symbols
01,01 € CSeo(RY) we set 6 := 0y @ --- ® o7 € T(CS(RY))

The aim of this section is to prove the following result.

71f o is a symbol, the map (£1,&2) — o (&1 + £2)does not necessarily define a symbol in (£1,&2) since {(£1,£2)) *oo
(€1 + £2) where we have set () = /1 + [n]2.
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Theorem 20 Let R : o +— o(z) be a holomorphic regularisation procedure on CS(IRxq) and let
€ 0y(€) == 1(|¢]) € CS(RY),i = 1,---, I be radial polyhomogeneous symbols of order a; which are
sent via R to & — 0;(2)(§) := R(7)(2)(|€]) of non constant affine order a;(z) = —qz; + a;, for some
positive real number q. For any matrix B of size I x L and rank L, the map

7 R(5)(%) o B
Jomey

which is well defined and holomorphic on the domain D = {7 € C!, Re(z) > —‘“}_J”;l, Vi €

{1,---,I}} extends to a meromorphic map
7 R(5)(%) o B
fier

on the whole complex plane with poles located on a countable set of affine hyperplanes

ar +"'+a7i+dr‘ri_m .
Zr()y o 2 € ) ;) . 0,16{1,---,]}, TE Y],

and where 7, ; €]0,i] NZ depends on the matriz B.
In particular, the hyperplanes of poles passing through zero are of the form:

Zryt 20 =0, i€ {1,---,I}, 7€
If none of the partial sums ary +---+arq), i€{l,---,1}, T & X of the orders a; are integers,
then the hyperplanes of poles of the map zZ — f—(]Rd)L R(6)(2) o B do not contain 0 and the map is
holomorphic in a neighborhood of 0.
Before going to the proof, let us illustrate this result by an example.

Example 24 If we choose I = 3,L = 2, 0;,i = 1,2,3 , R(0)(2)(&) = (&) (&) * (here ¢ = 1) with
(€) :=\/1+&? and B as in (17.180), this yields back the known fact that the map

1 1 1

2 —s 2 —s 2 —s dé‘l d§2
w2 (|61 +1)70 (€0 4 &* +1) 772 (|&22 + 1)~
has a meromorphic extension to the plane with poles on hyperplanes defined by equations involving
partial sums of the s;’s. Whenever si, S, 83,81 + So2, S2 + 83, 81 + S3, 81 + S2 + s3 are not half integers,
the map is holomorphic in a neighborhood of 0.

(317 52, 33) =

Setting z; = z in the above theorem leads to the following result.

Corollary 9 Let R : 0 — o(z) be a holomorphic regularisation procedure on C'S(IR>o) and let & —
0i(€) = 7;(|¢]) € CSee(IRY),i = 1,---, I be radial polyhomogeneous symbols of order a; which are
sent via R to & — 0i(2)(§) := R(7)(2)(|€]) of non constant affine order a;(z) = —qz; + a;, for some
positive real number q. For any matrix B of siwe I X L and rank L, the map

z»—»/ L (R(o1)(2) @ -+ @ R(o7)(2)) o B
(R?)

which is well defined and holomorphic on the domain D = {z € C, Re(z) > %i, Vie{l,---,1}}
extends to a meromorphic map

ZH][ L(R(e1)(2) ® - @ R(07)(2)) o B
(®e)

on the whole complex plane with a countable set of poles with finite multiplicity

c &) +-t+arg +drr; — INo
qi

, ie{l,--- I}, 1€,

where r;; €]0,1] is an integer depending on the matriz B.
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Remark 25 In a bosonic field theory with polynomial interaction and mass m, the o;’s are all equal
to a given symbol o(§) = W arising from the classical free action functional A(¢p) = f]Rd<(A +
m2)p(€), p(€) d€ wia the n-point functions. As a ”Gedanken” experiment, if instead we took all the
symbols o; to be equal to o(&) = W for some irrational number s arising from a (non physical
since non local because of the operator (A +m?)* being non differential) action As(¢) = [a((A+
m?)* (), p(€) d&, then the maps z — [ .. (R(01)(2) ® - -- @ R(o7)(2)) 0 B would holomorphic around
zero on the grounds of the above corollary in which case renormalisation is not necessary. This hints
towards the fact that a field theory with non local free action Ag(¢p) and polynomial interaction should
be renormalisable at every loop order as would follow from the result of the above corollary extended to
affine constraints.

To prove Theorem 20, we proceed in several steps, first reducing the problem to step matrices B, then
to symbols of the type o; : £ — (£)% and finally proving the meromorphicity for such symbols and
matrices.

Step 0: A holomorphy result

Proposition 48 Leto; € CS..¢( IRd) of order a;. Let R be a holomorphic reqularisation on CSe ( ]Rd)
and let for i =1,--- I, a;(z) denote the order of o;(z) which we assume is affine o;(z) = (0)z + a;
with real coefficients and such that o/(0) < 0.

If a matriz B = (b;) of size I x L and rank L, the map

EH/W _R(5)0B(2)

is holomorphic on the domain D = {Z € C!, Re(z;) > — J(rog, Vie{l,---,I}}.

Proof: The symbol property of each o; yields the existence of a constant C' such that

I
|&(Z)OB(§17 7§L)| S C H Zblé—l Re(al (24))

=1 =1

I
C leI Z b, lé.l o (0)Re(z;)+a;

IN

\/1 + |77|2

where we have set (n) :=
We infer that for Re(z;) >

I
|6(2) o B(&y,---,&1)| < H Zbl& 1(0)Bi+a;

L
We claim that the map (&1,---,&L) — (Zl 1 ba&) {(0)Bi+ai Jieg in L1 ((IRd> ) if B; > —“3&‘;.

Indeed, the matrix B being of rank L by assumption, we can extract an invertible L x L matrix D.
Assuming for simplicity (and without loss of generality, since this assumption holds up to permutation
of the lines and columns) that it corresponds to the L first lines of B we write:

I I
[IQ bag) =@ = T[pio B, ér)
j i=1
L
S HpioD(gla"'ugL)
i=1
where we have set p;(1) := () OF+ai and used the fact that p;(n) > 1 and }(0)3; + a; < —d.

But
L
®L pioD = |detD| / pi
/< w ..
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converges as a product of integrals of symbols of order < —d so that by dominated convergence,
- L
R(5)(Z) o B lies in L* <(]Rd) ) for any complex number z' € D.

On the other hand, the derivative in z of holomorphic symbols have same order as the original symbols

(see e.g. [PS]), the differentiation possibly introducing logarithmic terms. Replacing o1 (z1),- -+ ,07(2r)
by 0)to1(21),--+,0)for(21) in the aboxife inequalities, we can infer by a similar procedure that for
Re(zi) > Bi > —ZZEB% the map Z — R(7)(Z) o B is uniformly bounded by an L' function. The

holomorphicity of Z— f( )" R(5)(Z) o B then follows. O

Step 1: Reduction to step matrices

We consider I x J matrices B with real cwhich fulfill the following condition
Jip<---<idp in {l,---,I} st by=0 if i>4 and b;,; #0, (17.184)

as a consequence of which the matrix has rank > L. If J = L then it has rank L; we call such an I x L
matrix, a step matrix.

Proposition 49 If Theorem 20 holds for step matrices then it holds for any I x L matriz B of rank
L.

Proof:

e Let us first observe that if the result holds for a matrix B then it holds for any matrix P B Q

where P and @) are permutation matrices i.e. after relabelling of the symbols and the variables.
Indeed, a permutation 7 € ¥ on the lines induced by the matrix P amounts to a relabelling of
the symbols; since the statement should hold for all radial symbols, if it holds for 6 = 01 ®---®o7
then it also holds for o(1)®- - - @0, (). Hence, if the statement of the theorem holds for a matrix
B it also holds for the matrix P B.
Assuming the statement of the theorem holds for a matrix B, then it also holds for the matrix
B Q. Indeed, a permutation 7 € ¥ on the columns induced by the matrix @ amounts to a
relabelling of the variables §. By Proposition 48 we know that if B has rank L then both the
maps Z— [, R(6)(Z) o B and Z+— [.. R(6)(2) o BQ are well defined and holomorphic on
the domain D = {Z € C!, Re(z) > —Zi,_J(FO’;, Vi € {1,---,I}}. By the Fubini property we
further have that '

R(5)(Z) o B = |detQ| R(G)(2)oBQ VZeD.
IR"L IRnL

If by assumption, the r.h.s has a meromorphic extension Z — f.z ﬁ(&)(?) o B () then so does
the L.h.s. have a meromorphic extension

R(5)(2) 0 B := |detQ R(5)(2) 0o BQ
IR"L IR"L

which moreover has the same pole structure.

e Let B be a non zero matrix. Then there is an invertible matrix P and step matrix T such that
P Bt = T where B! stands for the transpose of B. Hence the existence of an invertible matrix
Q = (P")"" such that B = T*Q. If B has rank L then so does the matrix T*; along the same
lines as above, one shows that if the statement of the theorem holds for T then it holds for B. On
the other hand, there are permutation matrices P and ) such that S := PT*Q is a step matrix
for the transpose of a step matrix can be turned into a step matrix by iterated permutations on
its lines and columns. If the theorem holds for step matrices then by the first part of the proof,
it also holds for T* and hence for B.
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Step 2: Reduction to symbols o, : { — ()%
Let us first describe the asymptotic behaviour of classical radial symbols.

Lemma 18 Given a radial polyhomogeneous symbol o : & — 7(|¢]) on R, 7 € CS(IR,) of order a
there are real numbers c;j,j € INg such that

o(§) ~ D e (€

7=0
where ~ stands for the equivalence of symbols modulo smoothing symbols. Here, as before we have set

(€ = v1+I[P

Proof: A radial polyhomogeneous symbol o on IR? of order a can be written
N-1
o(&) =Y 7a—y (1€ x(€D) + M (l€])
j=0

where N is a positive integer, 7(¥) is a polyhomogeneous symbol the order of which has real part no
larger than Re(a) — N and where 7,_; are positively homogeneous functions of degree a — j. x is a
smooth cut-off function on IR¢ which vanishes in a small neighborhood of 1 and is identically 1 outside
the unit interval. Setting v,—; := 74—;(1) we write

g (1€) X(ED = va—y [€17 x(I€])
= 75 (©F -1 x(l€)
= 7a—i (O (1= (7)) x(€])
~ Yaei (I x(E) D br, (€)72H

k}jZO

(oo}

~ Z Ck, <€>a*j*2kj

k=0

where we have set i, := 74— by, for some sequence b, ,k € INg of real numbers depending on a and

j and used the fact that x ~ 1. Applying this to each 7,_; yields for any positive integer IV, the

existence of a symbol 7(V)(|¢) the order of which has real part no larger than Re(a) — N and constants
¢; such that

N—

a(€) =Y &€ + 7N (¢))

Jj=

—

which ends the proof of the lemma. O

Let € — 01(€) == 7 ([€]), -, €& — or(€) := 77(|¢]) be radial polyhomogeneous symbol on IR? of
order aq, - -- ,ay respectively which we write

N;—1

> Tiaeis (16D + 7™ (€D xle))

74i=0
Nifl
= Y e e 7N (le) (17.185)

Ji=0

oi(§)

where N;,i =1,---,I are positive integers, 7; 4,—;,,% = 1,---, I are homogeneous functions of degree
a; — Ji Ti(Ni) , ?i(Ni),i =1,---, I polyhomogeneous symbols of order with real part no larger than a; — N;

and where we have set ¢} =7 4,5, (1),i=1,---, 1.
It follows that

N —o00 4
j1=0 jr=0

I N-1 N-1 ‘ .
H 0i(&) = lim Z ... Z c} . 'CJI'I (&) =T (g )yu i (17.186)
i=1
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in the Fréchet topology on symbols of constant order.

Proposition 50 If Theorem 20 holds for symbols o; : & — (£)* then it holds for all classical radial
symbols.

Proof: Let B be an L x I matrix of rank L and let oy, --- , 07 be radial polyhomogeneous symbols in
CSe.o(IRY) with orders aj, - - - , ay respectively. For each j; € N,ie{l,- - I} weset p/'(§) == (g)ai=Ji
and for all multiindices (j1,--- ,jr) we set p/t91 := @1, pli.

Let us first observe that since Re(a;) — j; < Re(a;), the maps
g [ RGTTE B
R%))"

are all well defined and holomorphic on the domain D = {7 € C!, Re(z;) > _%7 Vie{l,---,I}.
Let us assume that the theorem holds for this specific class of symbols. Then using again the fact that
p2* has order a; — j; which differs from a; by a non negative integer, and replacing a; by «;(z;), it

follows that these maps extend to meromorphic maps

e R(p 1) (2) o B
anL
on the whole complex plane with poles 2= (z1,--- ,27) on a countable set of affine hyperplanes
Qr "i_"'""a‘ri""dr‘r,i_]l\I
27(1)++Z‘r(1)€ W ;) 07 TEE],

independent of the j;’s.
In the limit as N — oo it follows from (17.186) that the map

7 R(5)(Z) o B
RnL

extends to a meromorphic map on the complex plane:

P R0

)
N— N—
= X e f T e (R R 0) o

i=1

with the same pole structure. O

Step 3: The case of symbols o; : £ — (|{|* + 1)* and step matrices

We are therefore left to prove the statement of the theorem for an I x L matrix B with real coefficients
which fulfills condition (17.184) and symbols o; : € — (|£|* + 1)%. As previously observed, such a
matrix has rank L.

Lemma 19 Under assumption (17.184) on B = (b;) the matriz B*B is positive definite. Note that
with the notations of (17.184), we have i; > 1.

Proof: For k € R” in the kernel of B, we have Zle by& =0 for any i = 1,--- , I, which applied to
i =1, yields Zlel bi,1& = 0. But since by assumption b;,; = 0 for [ < L only the term by, 1.§; remains
which shows that & = 0. Proceeding inductively yields the positivity of B*B. O

Proposition 51 Let B := (bj)i=1,... 1:1=1,... be a matriz with property (17.184). The map

(@, yar H/]Rd 10> by der - des.

i=1 [=1
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which is holomorphic on the domain D := {a = (a1,--- ,ar) € C!,Re(a;) < —n,Vi € {1,--- ,I}}, has
a meromorphic extension to the complex plane

I L
(a1,--- yar) = ]{W)L IO bugn)s den---der (17.187)

i=1 [=1

L 1 Z HT,m(alu"' 70’1)
T I I
[Tioi T(=ai/2) [, iz [(arqy + - F argy +0sr) - (arqy + o+ @iy +nsr — 2mi)]

for some holomorphic map H; , on the domain ﬂle{Re(aT(l) + o Fary) +2my < —nsp}, with
T € X1 and m = (my, -+ ,my) o multitndex of non negative integers. The s.; < i’s are positive
integers which depend on the permutation T, on the size L X I and shape (i.e. on thel;’s) of the matriz
but not on the actual coefficients of the matriz.

The poles of this meromorphic extension lie on a countable set of affine hyperplanes ar1y+---+a,@) €

—dr.;+ NowithT e Xy, ie{l,--- I}, r; €]0,1] NZ.

The proof, which is rather technical and lengthy is postponed to the Appendix at teh end of this
section. It closely follows Speer’s proof [Sp] which uses iterated Mellin transforms and integrations by
parts.

This ends the proof of Theorem 20.

17.3 Renormalised multiple integrals with linear constraints

The above constructions give rise to a map on Lyax? (CS™24(1RY)) given by:

U Lo T(CSPYRY)) — L M(C™)

GoB <2H][ Lﬁ(&)(i)oB>
(RY)
with the following property:
V(GoB)® (' oB')=V(60B)®V (6o B').

This property which clearly holds for large Re(z;) extends to an identity of meromorphic functions
by analytic continuation. Applying a renormalised evaluator (14) at zero A (which by definition is
compatible with the product @) on LM(C>) leads to a character on LT (C'S24(1RY)) given by:

1/) . Lmaxj (OSZ.Z (IH )) — C
B ! RN ~ B A — RN ~ —;; B
0 (IR )[ (:) : <2 /(IR )[ (C)( )

U ((50B)@(5" 0 B')) = 9" (50 B) @y (6" 0 B),
which extends the ordinary multiple integral: [ (A ) R () o B defined for symbols o; with negative

ie

enough orders.

Let L := (IRL)* ®@ R>™ =UR, (]RL)* ® IR’ denote the set of linear maps from RR* to IR for some
positive integer /. It is an algebra for the Whitney sum. Let L£7'** be the subalgebra of linear maps
with rank L. Specialising to symbols ¢;(¢) = o(§) = ﬁ yields a map:

e ¢

A ~
Be(R") ' @R ¢ ][ _R(0®)oB
()
with the property that for any B € (]RL)* ® R’ and any C ¢ (]RM)* ® R’
A _ A _ A _
][ R (c®)o(BaC) = ][ R (c®") o B ][ R (0®)oC ).
(o) ()" (o)™
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This multiplicative property corresponds for Feynman diagrams to the compatibility with concatena-
tion of graphs.

Appendix : Proof of Proposition 51

To simplify notations, we set ¢;(§) := El 1 ba§ where § = (§1,---,&z) and b; = —a;. For Re(b;)
chosen sufficiently large, we write

hor e / e Sl tai®) g, - gy,
(m)”

and

I
Z€i<Qi Z Zez zlblmfl §m+zel— Z lmfl §m+zeu

=1 l,m=11i=1 l,m=1 i=1
where & - &, stands for the inner product in IR? and where we have set

I

0(€)im = Z €i bitbim.-

i=1
Since the €; are positive 6(¢) is a non negative matrix, i.e. 6(e)(§)-§ > 0. It is actually positive definite
since
L

Z e(g)l,mgl : §m =0

I,m=1

I
= Z€i|Qi(§)|2:O:>Qi(§):0 Vie{l,--- I}

I
= Y la@P =B =0=¢=0,
i=1

using the fact that B*B is positive definite. The map & +— mezl 0(€)im & - &m therefore defines a
positive definite quadratic form of rank L.

A Gaussian integration yields f( ) e~ Zimala©F d&y---dgp, = (det(ﬁ(g)))fnﬂ. We want to per-

R4
form the integration over e:
n

€1 €€ st € € e =160,
L(0:/2)-Tr/2) Jo — 0 T Jy T ! -

Let us decompose the space IRk of parameters (e, - ,€r) in regions D, defined by €,(1) < --- < ey

b b
for permutations 7 € X;. This splits the mtegral fo del IS de;e?lfl . '617171 (det(6(e))) ™2 e~ L e
into a sum of integrals fD deq - - d6161 ot € (det(@( )))7% e =1,
Let us focus on the 1ntegral over the domain D given by €1 < --- < €g; the results can then be transposed
to other domains applying a permutation b; — a,(; on the b;’s. We write the domain of integration
as a union of cones 0 < ¢;, < --- < ¢;,. For simplicity, we consider the region 0 < e; < --- < €7 on
which we introduce new variables t1,--- ,t; setting ¢; = t;t;_1---t;. These new variables vary in the
domain A := HI 1[0 1] x [0, 00). Let us assume that by = 0 for ¢ > 4;, then the [-th line of 6 reads

I 4 -1
0(€)im = Ztl <ty bigbi, = Ztl <ty biabim =t < i 1Diym + Z tiy—1- -t bilbim>
i—1 i—1
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or equivalently the m-the column of 6 reads

I Tm G —1
€)im = Ztl e ti bilbim = Ztl t; bzlbzm = tl im < zllbnm + Z tzm—l t; bilbim> .
i=1 i=1

Factorising out /Ty - - - ;, from the I-th row and /s - - 1;,, from the m-th column for every I, m € [[1, L]]
produces a symmetric matrix 6(t).
Following [Sp] we show that its determinant does not vanish on the domain of integration; if it did vanish

at some point T, 9(1) would define a non injective map é(z) D(x, ) — (Zlel é(z)uwl, e ,Zle é(z)uxl),

i.e. there would be some non zero L-tuple w := (z1,--- ,x1) € R” such that (z)(z) = 0 which would

in turn imply that Zlel Zan:1 X (9(1))l Ty =z - 0(7)(z) = 0. From there we would infer that

M=

=1 m=11i=1 i=1

M I /L 2
SO rremibibimair, =Y <Z VI Ti bud?z) =0

l
Mh

VT Tibgz; =0 (17.188)

~

1

l
Mh

(billfﬁl + /T, T bilIl) =0 Viel[l,I]], (17.189)

~

1

where we have factorised out 77 - - - 7;, in the last expression. Let us as in [Sp] choose M = max{l, z; #
0}; in particular | > M = x; = 0. On the other hand, since | < M = i; < ip we have | < M =
bi,, 1 = 0. Choosing i = iy in (17.188) reduces the sum to one term b;,, prxps which would therefore
vanish, leading to a contradiction since neither b;,, ps nor xs vanish by assumption.

We thereby conclude that deté(;) does not vanish on the domain of integration.

Performing the change of variable (e1,--- ,€5) — (t1,- -+, t7) in the integral, which introduces a jacobian

determinant H ', we write the integral:

i=1"

1 i—
F(b1/2) (b[/2 / dty - - /dlf] 1/ dt]}_{t 1H

NIR

! b I - —n/2
H(tltz)?lfl Q*Zizl tr-t; (det@(t))

=1

= dt dt dtr_

T(b1/2)--T(b1/2) / f/ a / -

I b1+ +b; L L1 n
Hti (tl"'tiL)i i(tlLfl t'LL 1)*717 "'(tlé "'til)ii h@)
1=1

bitedbi—dry

1 2
= T2 T2 /A At dhy Ht

where the r/s are positive integers depending on the size and shape of the matrix B (via the 4;’s) ®
and where we have set

h(t) (17.190)

oyl d/2: ooy —di2 L I
ht) = e (deto( )) (det@(t)) met t

Since deté(t) is polynomial in the t;’s, the convergence of the integral in ¢; at infinity is taken care of
by the function e~ arising in h. On the other hand, h is smooth on the domain of integration

18The integers ;’s do not depend on the explicit coefficients of the matrix.We have i; > [ so that r; < ¢; in particular,
Re(a;) < —n = Re(b1) + -+ + Re(b;) — dr; > Re(b1) + --- + Re(b;) — di > 0 so that as expected, the above integral
converges.
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since it is clearly smooth outside the set of points for which deté( t) vanishes, which we saw is a void
set. Thus, the various integrals converge at ¢; = 0 for Re(b;) sufficiently large

Integrating by parts with respect to each t1, - - - , t; introduces factors e v dn o i € Ny when
bydodby—dry
taking primitives of ¢, 2 and differentiating h(t).

We thereby build a meromorphic extension f.. Hf:1<ZlL:1 bi1&)% to the whole complex plane as a
sum over permutations 7 € ¥ of expressions:

byt b)) T s
) 40 D s ) (mattms)
1 fA 1=1 z T (_)

Hf:1 F(bi) Hf:l ((bT(l) R b"’(i) - drTvi) T (b‘r(l) et b'r(i) —drr; + 2m1))
+ boundary terms),

where the boundary terms on the domain A are produced by the iterated m; integrations by parts in

each variable ¢;. Here r,; < ¢ is a positive integer depending on 7 and the shape of the matrix and
bryt+ by —drr

we have chosen the m;’s sufficiently large for the term [, [T;_; t; 2 i h(TmlJr"'erI)(ﬁ)

to converge. The boundary terms are of the same type, namely they are proportional to

brapt @ T / /
fA’ 1 7, : ' h’(m1++mk)(t)
= 4

T10 .y (b + -+ + oy — drri) -+ (bray + -+ bry — d ey + 2m)))

for some domain A’ = 1‘[{;11[0, 1] x [0, 00] for some I"' < I or A" = 1‘[{;11[0, 1] for some I' < I and
some non negative integers m; < m; with at least one m; < mj,.

This produces a meromorphic map which on the domain N/_;{Re(b, ) + - + br;)) + 2m; > dry;}
reads

; Z HT;m(blu"' ,br)
[Ty D) 55, TLmy ((bry + -+ brgy — drea) - (bray -+ + brgiy — drrs + 2m5))

with H; ,, holomorphic on that domain. It therefore extends to a meromorphic map on the whole
complex space with simple simple poles on a countable set of affine hyperplanes {a, )+ -+ a, ) +
drr; € 2INg}, where as beofre, the s, ;’s are integers which depend on the permutation 7 and on the
size L x I shape (i.e. on the l;’s) but not on the actual coefficients of the matrix.

Let us further observe that since r,; < i, if Re(a;) < —d = Re(b;) > d for any i € {1,---,I}, then
for any 7 € X; we have Re(bT(l) + -+ b)) — drr; > 0 so that we recover the fact that the map
(a1, ,ar) — f—(md)L Hf:1<ZzL:1 bi&)® is holomorphic on the domain D := {a = (a1, -+ ,ar) €

C!H Re(a;) < —d, Yie{l,---,I}}. O
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18 From symbols to pseudodifferential operators on manifolds

We extend the notion of pseudodifferential symbol on IR? to symbols with varying coefficients on an
open subset of R which patched up using a partition of the unity, lead to pseudodifferential operators
on a closed manifold.

18.1 Pseudodifferential operators on an open subset of R?

Definition 27 A smooth function o € C*°(U x ]Rd) is a scalar symbol on U whenever the following
condition 1s statisfied. There is some real constant a such that for any multiindices v, § 6%1 for any

compact subset K C U, there exists a constant C., 5 x € RY such that for any xz € K, € € R
03080 (2, €)| < Cy 5 (€)1 (18.191)
where we have set (£) := /1 + |£|2.

Example 25 The polynomial

o(z,6) = Y cal®)6"

lof<a

with co € C°°(U) is a symbol since it satisfies condition (18.191).

Let S%(U) C C*°(T*U) denote the set of scalar valued symbols on U which fulfill condition (18.191).
Let us further set S*(U, V) := S%(U) ®x End(V) for any K-linear space V and

Sw,v)= J s'w,v).
ac R

With these notations we have S*(U) = S*(U,K); S{U)=S(U, K).
Remark 26 For two real numbers ay,as, we have

a1 <ag = S (U) C §*(U).
We call a symbol in the intersection

STU) = [ $UU); STWUV) = ) YU, V)

a€ R ae R
a smoothing symbol.
Example 26 Symbols o(x,&) with compact support in & are smoothing symbols.

Equality modulo smoothing symbols, i.e. the relation o ~ ¢’ defined for two symbols o and ¢’ by
o—o €8 °(U,V) is an equivalence relation in S(U, V). For symbols o € S(U,V),01, € S(U, V), k €
INg we set

o~ Y ope |VaeR, 3K(a)e N,st. K>K()=o- Y 0,8 U,V)
ke INg k<K

A symbol in S(U,V) is classical (resp. log-polyhomogeneous of type k) of complex order a if for any
fixed z in U, the map z +— o(z,-) lies in OS% (R?) @ End(V) (resp. CS%F(R?) @ End(V). More
explicitely, we set the following defintion.

Definition 28 Let a be a complex number.

1. A symbol o € S(U, V) is classical (or polyhomogeneous) of order a if:
o(2,8) ~ > Xx(§) 0aj(x,§) (18.192)
3=0
where
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e \ is some smooth function on R? such that X vanishes in a small neighborhood of 0 and x
is identically one outside the unit ball,

o 0, € C®(T*U,End(V)) is positively homogeneous of order a — j, i.e.
Oa—j ((E, té-) = ta_joa—j (LL', 5)
foranyt >0, any x € U and any £ € T;U — {0}.
2. A symbol o € S(U,V) is log-polyhomogeneous of log-class k for some non integer integer k
if
k oo
o(2,€) ~ Y Y x(€) oajulx, &) log' €]
1=0 j=0
with oq—j1(x,€),l =0,--- , k positively homogeneous functions of order a — j.

Let CS%“F(U,V) c S(U,V) denote the class of log-polyhomogeneous symbols of order a and log-class
k and let us set CS**(U,V) := Upe n, CS“*(U, V). Then CS*(U,V) = CS“O(U, V) stands for the
set of classical symbols of order a.

The set S(U, V) is stable under the following star-product of symbols which is defined modulo smooth-
ing symbols by:

—i)lel
oxT Y] ( 7)! 0fo(x,8) o A7 (,¢), (18.193)
"

wher eo stands for the composition in End(V). If o is of order a and 7 of order b then o x T is of order
a + b. The leading symbols o, and 7, of ¢ and 7 mutliply under this product:

(0 *T)atb = Oa * Tp-

The star product preserves the set of classical (resp. of log-polyhomogeneous symbols); since these
sets are not stable under summation, we consider the algebras

CS(U,V) = (UgecCS*(U,V)); CS**(U, V) := (UgecCS** (U, V))

generated by the corresponding unions of classical (resp. log-polyhomogeneous) symbols on U.
To a symbol o € S(U, V) € C=(U x R%) @ End(V) corresponds a linear operator

Op(o) : CX(U, V) — C™®(U,V)
u — Op(o)(u)(z) :=F " (o(x,-)a)

called a pseudodifferential operator on U with coefficients in End(V). We call it classical (resp.
log-polyhomogeneous) of order a € C (resp. and of log-type k € INg) if the symbol ¢ has order a and
lies in the corresponding class of symbols.

Example 27 A differential operator A =3, -, ca D¢ on U with coefficients cq in C>(U,End(V))
and where we have set D¢ = (—i)*0g, is a pseudodifferential operator with coefficients in End(V')
whose symbol reads o(x,&) = > lal<a Cal®

For any symbol o,
Oplouta) = [ 9ot eieie
= / / TV oz, Euly)dy dE (18.194)
R4 R4
= / K(z,y)uly) dy,
R4

where

K(z,y) :== /IRd TV o (g, £)dE
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is the kernel of the operator Op(o).
In general, this is a distribution kernel, whose singularities can be shown to be located on the diagonal.
In particular, for two smooth functions y, ¥ with disjoint compact suports, the operator y Op(o) x has
smooth kernel.
A linear operator

A:C3 (U V) — C®(U,V)

cpt

u —  Au(z):= K(x,y)u(y)dy
Rd
defined by a smooth kernel K is called a smoothing operator.
The operator Op(c) does not generally take values in Cept(U) but it does if o has compact support in
U. Let us denote by Scpt(U) the subset of compactly supported symbols on U.

Remark 27 A pseudodifferential operator Op(c) with compactly supported symbol o in U, maps a
smooth function with compact support in U to a function with compact support in U. It thereby defines
a properly supported operator in U since the formal adjoint of its symbol, which can be expressed
in terms of derivatives of the original symbol (see e.g. [Gi]), also has compact support. Indeed, a
pseudodifferential operator A is properly supported (see e.g. [Sh], [Taj, [Tr]) in U if it sends a smooth
function with compact support in U to a function who has support in some compact subset of U, and
the same property holds for the formal adjoint of A.

Unlike a differential operator A which is local in the sense that if u vanishes on U then Awu also vanishes
on U, pseudodifferential operators are not local since they are defined by Fourier transforms which
smear out the support. However, a pseudodifferential operator A is pseudo-local in the following sense
[Gi]. Given any open subset V' C U and x, x € Cg5,(V), then

xu € Co (V) = x Au € O (V) VYu e C(U).

18.2 Basic properties of pseudodifferential operators

We state some basic properties of pseudodifferential operators acting on functions with support in
a compact set U. These properties easily extend to pseudodifferential operators on smooth maps
C>°(M,V) where V is some linear space.

Definition 29 A pseudodifferential operator A on U is a linear operator A : Co(U) — C=(U) of
the form
A = Op(o(4)) + Ra

for some smoothing operator Ra and some compactly supported symbol o4, called the symbol of A
which is determined up to a smoothing symbol.

Thus, in contrast to a differential operator which has well-defined symbol, the symbol of a pseudodif-
ferential operator only makes sense modulo smoothing symbols.
The leading symbol of a pseudodifferential operator A of order a on U is defined by

ol (A)(z, &) = Jim t™%0a(x, t€) V(x,8) € T"U.

A pseudodifferential operator with a classical (resp. log-polyhomogeneous symbol of type k) symbol is
called classical (resp. log-polyhomogeneous of type k). It is called elliptic if o (z, &) is invertible for
any x € U, € T —2*U — {0}.

Since a compactly supported pseudodifferential operator sends functions with compact support to
functions with compact support, we can compose two compactly supported operators.

Proposition 52 The product of two pseudodifferential operators A = Op(c(A)) of order a, B =
Op(a(B)) of order b, with compactly supported symbols o(A) and o(B) on U, is a pseudodifferential
operator of order a + b with symbol

OAB ~ A% OR. (18.195)
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More precisely,
(_Z)Ia‘ feY feY
AB= ) -~ —O0p(00a070p)+Rn(AB), (18.196)
o <N -1

for some operator Ry(A, B) of order < a+b— N depending on A and B. In particular,
ol(AB) = oL(A) o (B).

The composition of two pseudodifferental operators Op(c(A))+ R4 and Op(c(B))+ Rp on U then fol-
lows by (bi)linearity from combining the composition of two compactly supported operators Op(o(A4))
and Op(o(B)) with composition with smoothing operators.

The symbol of a pseudodifferential operator does not transform covariantly under change of parametri-
sation.
For two open subsets U,U’ of R?, a pseudodifferential operator A on U and a diffeomorphism
k:U — U', we set

KeAd =Keo0Aok"

where k*u := uwor and k.u = uo k™! for any u € C*(U). Note that dr(z) : T,U — T, U’ and
(dr(x))* T:(w)U’ - TrU.
The following proposition tells us in how far x.Op(o) differs from Op(k.o) where

ko (x', €)= o(k™H(2)), dr(k (') €). (18.197)

Proposition 53 Let o be a compactly supported symbol on U. Then k.Op(o) has (compactly sup-
ported) symbol

kyo(2', &) == reo(2', &) + Z 5 da(c™Hx),n) 050 (k" (2'), (dr(k ()" n) . (18.198)

|a|>0
Here ¢o (2, &) is a polynomial in & of degree < % with ¢o(2', &) = 1.

Remark 28 In particular, keo(2x',£') — keo(2', &) is of the form Z\ﬁ lol Qo p(z) EP dga(-€), for
2

<15l
some smooth functions a3 and where we have set ' = k(z), & = dr(k™(2'))" ¢, an observation
which turns out to play a crucial role in the following.

Idea of proof: We need to show that x.Op(o) differs from Op (k.0) by a smoothing operator.
To motivate the result (we refer e.g. to [Gi] for a complete proof), let us first assume that & is linear.
We set o’ = k(z),y’ = k(y) and £ = £'¢’, with k' the transpose matrix. With these notations we have

da’ d¢' = |detr| dx |detk| ™! dé = dx d¢
and .
(@' —y, €)=~y (v') €)= (T —y), &) = (&~ y.8).
With the above notations and k.o as in (18.197) we have
keo(x', &) = o(x,§)

and

(rOp()) u'(a") = (kxo Aor™) u'(k(x))
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so that in this case
k+Op(c) = Op (k.0) .

When & is non linear the situation is more complicated and requires introducing the notion of amplitude
which we choose to avoid here. We write

r—y = & '@)—r(Y)

1
/ O Mt + (1 —t)y')dt
0

(/01 de~(ta' + (1= t)y') dt) @ — )
= T y)a -y)

with T'(z',y") := fol drk=1(tz' + (1 — t)y’) dt a smooth square matrix valued function of 2’ and y" with
T(z',2") = d(k~')(z') is invertible since & is a diffeomorphism. Setting 1 := T'(z',y')'¢ we write

(x—9,8) = (T, y) " —y),&) = (' =y, n).

Moreover, there is a neighborhood W of the diagonal on which T is invertible and on which we can
write

dyd¢ = |det(T(y',y)) [det(T (2", y")|~" dy' dn.

Further setting o’ (2/,7) := o(x, &) we can write similarly to the linear case:

(r«Op(0))v/(2") = (H*oOp( ) o & )u! (K ()
o) (5"u) (x)

/ / 90 (0, €) o (s(y)) dy e

R4 J R4

[ e ey ) et (T ) et )]y d
R4 J R4

/}Rd /RdE oy e Y ! (o )l (i) [det (T(y, ') |det (T2, o/ )| 1 dy dnp

+
/ / ) o (o yf )l () dy i+ (Kl ) (&),
R2 R4

where we have set 19:

d(@y'n) = o' (2 ) E(,y)|det(T(y,y) [det(T(a",y") 7
= ok M), T N y)in) o2, y). (18.199)
Here ®(2/,2') = Z(«/,y) |det(T(y/, ) |det(T(z',y'))|~" where = is a smooth function on U x U

which is identically one in a neighborhood of the diagonal and with support contained in the open
neighborhood W of the diagonal on which T is invertible. The remaining error term

(K@) = s [ [ =B ) € 0 ) (T ) et (T )|
defines a smoothing operator.
On the other hand, one can show (see e.g. [Sh] Theorem 4.2) that Op(a’) := [za [ g €' Ya/(x' )y m) u

19The following expression defines a compactly supported amplitude.
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defines an operator on ngt(U ) with compactly supported symbol

Feo(z', ) ~ Z%aga (k=Y ("), (dr(x ()" n) (Dzeiw;/(z),m)

o 2=z
o Y L @) m) 850 (7 @), () ).

1

~ o (k) (AT @) )+ Y — ba(r(@),m) O (7 (2'), (dr(s™" (")) n)

|| >0
/ 1 1, o (=1( —1(
~ ko (2'm)+ Z = ba(k ("), n) 050 (k1 (2'), (dr(™"(2)) 1),
la|>0
where k(z) := k(z) — k(z) — dk(z)(z — ) corresponds to the “non linear part” of x and ¢q(z,n) =

Daei@“g(z);m

z ‘z:z

is a polynomial of degree < % whose value is one for a = 0. O
Even though the symbol of an operator is modified by a change of coordinates, some of its features are
preserved.
Corollary 10 Let o be a compactly supported symbol on U and let A := Op(o).
1. k«A and A have same order given by the common order of k.0, k«o and o.
2. If A is smoothing so is ki A.

3. If o is a classical (resp. log-polyhomogeneous of type k) then so is keo so that the type of A is
invariant under a coordinate change.

4. The leading symbol of A transforms covariantly
o (ke A) = kyop(A).

18.3 Pseudodifferential operators on manifolds

Let M be a smooth d-dimensional closed manifold. Recall that a coordinate chart (U, ¢) on M is
an open subset of U of M and a diffeomorphism ¢ : U — ¢(U) C RY. An atlas is a collection
{Ui, ¢i, Xi, i € I'} where the open subsets U, ¢ € I form an open cover of M, for each i € I, (U;, ¢;) is
a coordinate chart and {y;,? € I} is a partition of unity subordinated to the covering.

Definition 30 We call localisation subordinated to a chart (U,¢) around a point x in M of a linear
operator A : C®(M) — C*(M), any map x AX where x and X are smooth functions with compact
support in U which are identically one in a neighborhood of x.

Remark 29 Recall that if x and x had disjoint supports, then the operator x A X would be smoothing.

Definition 31 A linear operator A : C*°(M) — C°(M) is called pseudodifferential on M if given
any local chart (U, ¢), any localisation Ay := x Ax subordinated to this chart, the induced localised
operator

Apwy : [ 8" 0o Ay o ¢.(f),

where ¢* f := f o, is a pseudodifferential operator on ¢(U).
The symbol 045(A)(x,-) of A in a given local chart (U,¢) around x € U s defined by the symbol of

Ap()-
With these definitions at hand, we can write a pseudodifferential operator
A= > Xi Ax; + R(A) = 3 Op(oi;) + R(A)  (18.200)
Supp(x:)NSupp(x;)=¢ i,5s.t. Supp(x:)NSupp(x;)=¢

where o0;; are compactly supported symbols with supports in ¢;(U;) N ¢,(U;) and R(A) is a smoothing
operator.
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Features of pseudodifferential operators of the type Op(c) which are preserved under diffeomorphisms
can be extended to psuedodifferential operators on manifolds. Let us make this statement more precise.
If (U,¢) and (U’,¢') are two local coordinate charts, then setting x := ¢’ o ¢!, on the intersection
UNU' we have

Aqb’(UﬁU/) = Ii* e} Aqb(UﬁU/) O Ry = K*AQB(UHU’)' (18201)
By Proposition 53 and its Corollary 10, Ay ) and Ay are of the same type (classical, log-
polyhomogeneous), have the same order and differ by a pseudodifferential operator of order strictly
smaller. It therefore makes sense to set the following definitions.

Definition 32 Let A be a pseudodifferential operator on M.

1. A is classical (resp. log-polyhomogeneous of type k) if if given any local chart (U, @), any lo-
calisation Ay subordinated to this chart, the induced localised operator Ay is classical (resp.
log-polyhomogeneous of type k).

2. A has order a if given any local chart (U, ¢), any localisation Ay subordinated to this chart, the
induced localised operator Ayry has order a.

3. We call a linear operator smoothing if given any local chart (U, @), any localisation Ay subordi-
nated to this chart is smoothing.

4. The leading symbol or,(A)(x) at a point x € U is given by or, (Agw)) (¢(x)) for any local chart
(U, d) and any localisation Ay = x A x subordinated to this chart where x and X are identically
one in a neighborhood of x.

5. A pseudodifferential operator A with invertible leading symbol oy, (A)(x, &) for any x € M and
any & # 0 is called an elliptic pseudodifferential operator.

On the grounds of these definitions we can introduce the set C*(M) (resp. CL™F(M)) of classical
(resp. logpolyhomogeneous) pseudodifferential operators on M of order a (and log-type k).

It follows from Proposition 52 that the product A B of two classical (resp. log-polyhomogeneous)
pseudodifferential operators A and B on M of order a and b (resp. and log types k and 1) is a pseu-
dodifferential operator of order a + b (resp. and log-type k + ). Furthermore, the product is elliptic if
A and B are elliptic as a result of the multiplicativity of leading symbols.

We can therefore define the algebras

CUM) = (| ce*(d)), resp.CL* (M) = (| ceor(m))y = | (| cerF )

a€cC acC ke INg acC

generated by all classical (resp. log-polyhomogeneous) pseudodifferential operators on M for the prod-
uct of operators. Here (S) stands for the algebra generated by the set S. We also consider the algebra
Cl™>(M) := Nyec CL* (M) of smoothing operators which is a two-sided ideal in C¢(M) and C¢** (M)
since the product of two operators of orders a and b has order a + b.

These definitions extend to linear operators acting on smooth sections C*°(M, E) of a smooth vector
bundle E over M. If V is the model space for the vector bundle F, the above definitions and properties
generalise replacing coordinate charts (U, ¢) on M by local trivialisations (U, ¢, ®):
E, — oU)xV
(2,0) = (B(x),B(v)).

This leads to algebras defined in a similar manner to the above algebras:

CUM,E) = (|JcCt"(M,E), Ct>*(M,E):=()Ct"(M,E),
acC acC

cr*(M,E) = ({Jcer (M E) = | (| Ce"*(M, E)).

acC k€ INg acC
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As before, since the product of two operators with orders a and b has order a + b, the algebra
CU™>°(M, E) of smoothing operators is a two sided ideal in C¢(M, E) and C¢**(M, E).

We now equip these infinite dimensional sets of symbols with the Fréchet topology of constant
order symbols. For a € C and any non negative integer k, the linear space Cﬁ“’k(M , E) of classical
pseudodifferential operators of order a and log-type k can be equipped with a Fréchet topology. For
this, one equips the set CS**(U,V) = CS**(U) @ End(V) of log-type k symbols of order a on an
open subset U of IR¢ with values in a euclidean space V (with norm || - ||) with a Fréchet structure.
The following semi-norms labelled by multiindices «, 8 and integers j > 0, N, I € {0,--- ,k}, give rise
to a Fréchet topology on CS**(U, V) (see [H]):

s, e g e me (1 + [€) RO 020 o (2,6 ;
N-1

0207 (0 = D U(©) 0y ) . 8)

Jj=0

|€|—Re(a)+N+\ﬁ|‘

SUPge K ce RY

SUPzeK,|¢|=1 ||8§‘8§0a_j7l(:v, Il

where K is any compact set in U and o,—; = Ef:o Ta—jil-

This Fréchet structure on C'S®*(U, V) induces one on C¢**(M, E). Indeed, as in (18.200), given an
atlas (Uj, ¢;)ier on M and local trivialisations @, : E‘Ul_ ~ ¢;(U;) x Vi € I (for some finite set I)
compatible with the charts, using a partition of the unity subordinated to the chosen atlas, we write
an operator A in C£**(M, E) as follows:

A= " Aj+R(A) = > Op(o;)+R(A), R(A)eCl™™(M,E), (18.202)

jeJcr jeJCI

where the A; = Op(o;)’s are pseudodifferential operators in Cfa’k(M, E) with compactly supported
symbols in CS“*(¢;(U;), V).
The countable family of semi-norms built from

1. a countable family of semi-norms given by the supremum norm of the kernel of R(A) and its
derivative on a countable family of compact subsets,

2. the countable family of semi-norms on Op(c;) induced by the ones on the symbols o; described
above,

provide a Fréchet topology on C¢**(M, E).
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19 Laplacians on closed manifolds

Laplacians on closed manifolds are useful to build invertible self-adjoint elliptic operators and from
there Fredholm operators. let us recall the following fundamental result which we quote without
proof, referring the reader to [Gi]. As before E is a hermitian finite rank vector bundle over a closed
Riemannian manifold M.

Theorem 21 An (essentially) self-adjoint elliptic operator A : C*° (M, E) — C*(M, E) with positive
order has finite dimensional kernel Ker(A) and closed range R(A). There is a topological splitting

(M, E) = Ker(A) @ R(A)

which is orthogonal for the L?-inner product on C*(M, E) induced by the hermiitan structure on E
and the volume measure on M.

Consequently, the operator ) := A @® 74 built from the orthogonal projection w4 onto the kernel of A,
is an elliptic self-adjoint invertible operator in C*°(M, E).

19.1 The Laplacian on the d-torus; a warmup

The Laplacian (19.209) on RY induces a Laplacian on the d-torus. The constructions below provide a
pedestrian description of this induced Laplacian.
Let us consider the d-dimensional torus T? seen as the range of (IRd, +) under the morphism:

dy: R — U1

(5171;"'7$d) N (eim’._.’eizd)

where U(1)? is equipped with coordinatewise multiplication. The map ®4 has kernel 7% so that its
range 'Y can be identified with a quotient space:

Tt~ R /2777

This amounts to identifying the algebra of smooth complex functions on T with an algebra of periodic
functions on IRY.

C=(TY) = {feC®(RY), f(z+2nk)=f(z) VkcZ®Voe R}
= {fec>(0,2n]Y), f(x + 27me;) = f(x) Vi=1,---,d, V€ [0,27]%},
where {e;,i =1,---,d} is the canonical basis of IRY. To a periodic function fon IR? we associate the
induced function f on <.
The maps _
(z) =€k kent (19.203)

form an orthonormal basis for the L?-scalar product:
(o) o = sz [ ula) - o(a)d (19201
U, V) pd = —— u(z) - v(x) dx, .
" (27T)d [0,27]d

where v stands for the complex conjugate. Indeed, for any k,l € Z™ we have
(Ves ) pa = 1 / e F0 gy = 8y
7 . (27T)d [0,27]¢ o

Lemma 20 A differential operator A on R® with constant coefficients induces an operator A on T¢
defined by o
Af(z):=Af(x) Yeer Y(z)

for any periodic smooth function f on IRY.
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Proof: Since f is periodic t3, f = f for any k € Z*. This combined with the translation invariance
of A yields
torn (Af) = topn At gpr (top f) = A J.

The function Af is therefore also periodic and A induces an operator A on I' as defined in the lemma.
O

This applies to any differential operator A = >°_ __ coaD* (where as before D, = —id,) with con-
stant coefficients c,; its symbol reads -
a(A)(&) = cal™. (19.205)
a<a

The orthonormal family {7y, k € Z%} in L?(T?) yields a basis of eigenvectors for A since we have:

Ayp(z) = Avy(z)
= Y o) 0 le)
el <a

= 0A (k) Vi (JI),
so that A has purely discrete spectrum?® given by
Specz = {oa(k), keZ"}.

Remark 30 This discreteness is a particular instance of the discreteness of the spectrum of elliptic
operators on closed compact manifolds. Here it comes out as a consequence of the discreteness of the

dual group T¢ to M7,

In particular the Laplacian A = A ga induces a Laplacian A e on T™.
It has kernel

KerApn = {f € C3(I"), Y " 07f =0} ~ RId.
i=1

As a consequence of the above discussion, the operator A e has discrete spectrum
Spec (A o) == {|k|? k ez} (19.206)

with |k[2 = 2%, k2 and
Arayg(x) = |k[* w(x)  VkinZ?

19.2 Laplace-Beltrami operator

The Laplacian on the d-dimensional torus is a particular instance of the more general concept of
Laplace-Beltrami operator, since it corresponds to the Laplace-Beltrami operator on ' for the metric
induced by the canonical metric on R

Let (M,g) be a closed oriented d-dimensional Riemannian manifold. Let g;; = g (,,0s,) be the
matrix representation of g(z) in some local coordinate chart (U, ¢) around a point xz in M. Let
(gij)m:l’m o Stand for the inverse matrix. We set detg to be the determinant of the d x d matrix gi;.

One can check that the form

dvoly(z) := /detg(x)dx1 A -+ Ndxg

is invariant under a change of coordinate z; — a}. It induces a hermitian product (f,f"), =

Jos f(z) f'(z) dz on smooth functions on M and hence one (denoted by the same symbol) on vector

20We refer to [?] for the notion of spectrum of an operator and related issues.
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fields and on differential forms using musical isomorphisms. In local coordinates, writing o = aydziy,
B = Bydxy where I = {i1,--- ,ip}t,J = {j1, - ,jp} are two multiindices of length p, we set

(0, ) = /M<a<x>, B(x))« dvol,

where o o
(o, B)p i= g7t - gy, iy By e gy (19.207)

Following Einstein’s conventions, one sums over repeated indices.

Using the inner product on forms, one can define the (formal) adjoint d* : QPTH(M) — QP(M) of
the exterior differentiation d : QP(M) — QPT1(M) setting:

(da, B) := (o, d*B) Yo € QP(M),3 € QPTH(M).

The divergence of a tangent vector field U on M is defined by
(U,Vf):=(divU, f) VfeC®(M),

where we have set (VU); := g;; U® and used the inner product
(U, V) = / g7 U Vidvol,,.
M
The divergence can be expressed in local coordinates as follows:

div(U)(x) = ﬁm% (vt Vaeig())

This expression is independent of the choice of local coordinates.

Definition 33 The Laplace-Beltrami operator associated with the metric g is defined by

I = 0O 0
A, = —di =— Vdetg g — 19.208
g ivoV m;;%i 99 5 ( )

Remark 31 The r.h.s is independent of the choice of local chart as a result of the above discussion.

The Laplace-Beltrami operator can be written

d d
Ag=—Y <gw‘ (2)0;0; — erjak>
ij=1 k=1
where I‘fj are the Christoffel symbols defined in a local system of coordinates (z1, - -+, 24) by V% a%j =

d Fk —8_ . The Operator A is therefore a differential Operator of order two on M with leadin, Ssym-
k=1"15 Ox g g
bol

o1 (Bg)(x,€) = [¢[%,

and hence elliptic.

Example 28 On R equipped with the canonical metric h given by the Euclidean scalar product, the
Laplacian reads

82
Ap==> —. (19.209)

128



19.3 Generalised Laplacians

Let E — M be a vector bundle based on a closed Riemannian manifold M and let it be equipped with
a connection V. The Levi-Civita connection V on M combined with V¥ yields a connection V™ M®F
on T*M ® E. Applied to a one form o € Q(M, E) this connection reads V?(*M@@Ea = Vgom(TM’E)a =
VEa—a(Vy). Composed with V¥ this yields an operator VI MOEVE . C°(M, E) — C=(M,T*M®
T*M ® E), or equivalently a bilinear form on C*°(T'M) with values in C*°(End(E)):

VITMEEGEa(XY) = Vi MeEV{s
= VRVE-VE yo VXY € C®(TM), Vo € C*(M,E).
The trace of this bilinear form on T'M yields a second-order differential operator

AE e _tr(vT*M®EvE)
= —VaVi-Ve.

where (e;)i=1,... » is an orthonormal basis of TM. This operator, called a (generalised) Laplacian on
C>(M, E), is independent of the choice of basis.

Example 29 When E := M x C, it yields back the Laplace-Beltrami operator on C*° (M, C).
In local coordinates, the generalised Laplacian AF reads:

E _ 7 E E k E
AP = =3 () (Vaiivai. —;rijvagj

i,j=1 !

where as before, the (I‘E )k defined by

n

g 0 PN
vE, o, => (T )ijaxi

oz
k=1

are the Christoffel symbols corresponding to the connection V. Locally we have V¥, = % + 9(%)
B ; J J
where 0 is Hom(E)-valued a one form, so that the top order part of A¥ coincides with the top order
part of the Laplace-Beltrami operator. The leading symbol of a generalised Laplacian is therefore also
given by:
or(AF) = or(Ay) = €.

This motivates the following definition.

Definition 34 A generalised Laplacian on a vector bundle E — M is a second order differential
operator with scalar leading symbol given by |E|2. It is therefore an elliptic differential operator.

19.4 Laplacians on differential forms

We build two generalised Laplacians AN M and (d + d*)? on differential forms on a closed oriented
d-dimensional Riemannian manifold M.

Let
dvoly(z) = +/detg(z) dz1 A -+ Adxg

be the associated volume form.

The interior product is a bundle morphism:

TM x AT*M — AT 'M

(v,a) —  afv,-).
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It satisfies:
i(w)(aApB)=i()(a) NS+ (—DPani(v)s, Vv e T,M,a e QP(M).

In a local coordinate chart (z1,--- ,x,) on M we have:
p .
i(v)(day A= ANday) =Y (=1 dai(v) day Ao Adii A day, Yo € T, M.
i=1

Using the interior product, for any vector field V on M we set:
VE.=i(V)oV.

Combining the graded Leibniz rule for V¥ extended to E-valued forms with the graded Leibniz rule
for i(V') we get for any «, 8 € Q(M, E):

VE(@AB)=VEaAB+aAVES.
The exterior product is a bundle morphism:

TM x AT*M — AT*T'M

(v,a) — V" Aa,

where v* is the dual linear form defined by v*(w) = (v, w), using the scalar product (-, -), induced by
the metric.

It is easy to check that e(v)e(w) + e(w)e(v) = i(v)i(w) + i(w)i(v) = 0 for all v,w € T, M.

Combining the interior and exterior products on (M) yields a Clifford multiplication.

Lemma 21 o c(v)* =i(v) YoeT,M,zeM,
o ¢ =€ —1 defines a Clifford multiplication on Q(M), i.e.
c(v)e(w) + c(w)e(v) = =2(v,w)y, Yv,w € TpyM
where (-, ), is the inner product on T, M induced by the metric structure.
o d= E?:l e(ej)Ve,
o df =— Z?:l i(ej)Ve,;, where (e1,--- ,eq) is an orthonormal basis of T, M.
(Partial) Proof: To avoid technicalities, we prove the results on one forms only.

e Givenv € T, M, f € Q°(M) and « € Q' (M) we have:
(i(v)a, fla = (a(v), f)a = a(v)(@)f(2).
On the other hand
(0, €e(0) ) = (o F0")a = ((2), 0" (@) (@) = o)) f(2).
Hence €* =4 on 1-forms.
e Let v,w € T, M. First observe that
e()i(w) +i(w)e(v) = (v,w), Yo,w € T,M.
Here again, we check it on one a 1-form «.
(e(v)i(w) + i(w)e(v)) a = a(w)v*+i(w) (v Aa) = a(w)v*+v* (w)a—v* a(w) = v*(w)a = (v, W) zay.
As a consequence we have:
c(v)e(w)+c(w)e(v) = e(v)e(w)+e(w)e(v)+i(v)i(w)+i(w)i(v)—2 (e(v)i(w) + i(w)e(v)) = —2(v, W),
where we have used the fact that e(v)e(w) + e(w)e(v) = i(v)i(w) + i(w)i(v) = 0.
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e Let usset d = >, €(ej)Ve, and show that d satisfies three requirements corresponding to the
items i), ii), iii) below, which define d uniquely:

i) Since V., sends QP(M) to QP(M), and €(e;) increases the degree of the form by 1, d sends
QP (M) to QPFHL(M).

i) dod(f) =0 VYfe C™(M,C). We prove that d?f = — (T, df) where T is the torsion. Since
the torsion of the Levi-Civita connection vanishes by definition, this will prove that d? = 0.

To simplify notations we set V; = V. s =V, where ¢; = %.
T J

f = ddf)
> e(di)Vi(0; fdaj)
ij

= > e(du;)0; fVi(da;).

ij

By Leibniz’s rule:

0
0= £<dxj, er) —x = (Vidzj, er) + (dzj, Vieg)s

so that
~ 0
2 _ , v
d°f(z) = - ;jk e(d:vz)axjf@ dxj, Viex)dzy,

= =Y e(dz;)dai(s ,df, Viex — Vies)

i<k

= = eldmi)dui(df, T(ei, ex))a
i<k
= _<Tv df>ac

iii) d is a derivation. Indeed, the Levi-Civita connection on the tangent bundle TM extends to
a connection on the exterior cotangent bundle AT*M and satisfies the following rule:

Vx(@AB)=VxaAf+aAVxp Yoa,0€ QM) VX € C°(TM).
Hence d = 3", e(e}) V., satisfies a graded Leibniz rule:
dlanp)=daAB+(-)Yandd Va,Be QM)
and therefore yields a (graded) derivation.

e Given o € QP(M) and 3 € QP (M) we want to check that (e(dz;)Via, 8)x = (o, i(dx;) V).
Differentiating the one form defined on v € T, M by a(v) = (a,i(v)3), and using Leibniz’s rule
yields:

Z (eiar(e;) — a(Vie;)) = (Viayi(e;)B)x + (o, Vii(ei) B)e = (€(€i) Via, B)z + (o, i(ei) Vi),
where we have used the fact that ¢* = i. On the other hand since the divergence is given by d*a =
—tr(Va) for a one form «, it follows from Stokes’s theorem that tr(Va) := Y7 | Va(e;, ;) =
>, (eia(e;) — a(Vie;)) integrates to 0 on M, i.e.

/ tr(Va)dvol, = —/ d*a=0.
M M
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Thus
(e(ei) Vi, B) o + (v, i(ei)Vif)e =
so that d* = —io V.

O
The Bochner-Weitzenbdck formula relates the operator (d + d*)? with AM ™M,

Proposition 54 Let a € Q(M) then

(d+d)*(a) = AN My 4 Z c(dz;)e(dz;)R(e, ej) ()

i<j

where R(u,v) := [Vy, Vo] = V] is the curvature tensor.
In particular, (d + d*)? is a generalised Lapalacian.

Proof: Using the formula of the proposition, that (d + d*)? is a generalised Laplacian follows from
the fact that AM M s one.

To prove this formula, first notice that if V denotes the Levi-Civita connection on 7'M with Christoffel
coefficients given by I‘fj then the induced dual connection V* on T*M reads Vidz; = —I'/,dxy. In
the following, we drop the x in V*. It follows that

(d+d*)*a = c(dz;)Vi(e(dz;)Vja)

1

,J

o(dx;)e(Vidz;)Vja + Z (dai)e(dz;)Vi(Vja)

7,j=1

<
<

I I
Nt I

(d:ri)c(ngd:ck)Vjoz
1

J

M3

VVa+Z (dz;)e(dx;) (ViV, — V;Vs)

1 i<j

.
Il

n

= — Z c(d:vi)c(dxk)vpgk Ao
ij=1

- ZVVOH—Z (dzi)c(dxj)R(es, e5)x.

i<j

and hence

% 2 _
(d+d)a = —Z (dxzi)e(dzy) + e(dxy)e(dz;))V MY, 2 Zc (dx;)? i%a

i<j 1=1

- ZVVOH—Z (dz;)e(dzj)R(es, e)cx

1<j

— AAMTTM ZC dz;)e(dzj)R(e;, ej)cn.

i<j
O

19.5 The Lichnerowicz formula

The operator d + d* studied in the previous paragraph is a perticular Dirac operator and the Bochner-
Weitzenbock formula, a special case of the more general Lichnerowicz formule.
To state this result, we need the concept of spin manifold and bundle for which we refer the reader to
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g. [LM], [BGV]. Let E =S ® W be a twisted spinor bundle over an even d-dimensional closed spin
manlfold M with auxillary bundle W. Given a connection VWV on W, VP =V ® 1+ 1® V"W defines
a superconnection on E. The corresponding twisted Dirac operator acting on C* (M, E) is the first

order differential oprator
d
D = Z c(e;) VE
i=1

where {e;,i =1,--- ,d} is some local orthonormal tangent frame. Then
—> g" (veivej +) kv ) +3 " e(da)e(da?)[Ve,, Ve, ]
iJ k i<j

defines a generalised Laplacian.

The Lichnerowicz formula (see e.g. Theorem 3.52 of [BGV]) or equivalently the general Bochner
identity (see Theorem 8.2 of [LM]) relates the square D? of the Dirac operator D on a Clifford module
E with the Laplace-Beltrami operator A¥ associated with the superconnection V¥ on E.

Proposition 55

AP + RE

= AZ4RY 4 TTM, (19.210)

D2

where ry; stands for the scalar curvature on M and
2
R .= Zc(ei) c(e )Qf“e] RV .= Zc(ei) c(ej) (Vw)ei)ej .
i<j 1<j

In particular, for a flat auzillary bundle we have:

M
=Ay +—,
My
where Ays is the Laplace-Beltrami operator on the Riemannian manifold M and on manifold M with
vanishing scalar curvature,we have:

D?* = AP + RV,
Proof: We can choose a local orthonormal tangent frame {e;,i = 1,--- ,d} at point € M such that

(Vg)z =0forallie{l,---,d}. Since Dpn =) ., c(e;) Vg, at that point z we have:

D?* = c(ei) VE c(ej) ij

N

s

<
Il
-

|
IM&

c(e;) c(ej) VeEi ij

S

&
Il
a

e ele) [(V5)2, + V8. ]

s

<
Il
-

I
J:M&

clen) ele) (V5)?

|
IM&

1,7j=1
- zn: vF)? ). o D cler) [ VE)QI . (VE)zj,ei:|
i=1 i<j
= AE + Z 61 vE)e e;j
i<j v
= AP+ RP
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The curvature term (VE)2 € Q?(M,End(E)) decomposes as (VE)2 =Q®1+1® 02" so that

RF = Z c(ei) c(ej) e, e, + R

1<j

A careful computation (see e.g. the proof of Theorem 3.52 in [BGV]) shows that >, c(e;) c(e;) Qe,,e; =
I
AL
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20 From closed linear forms on symbols to traces on operators

We consider linear forms on pseudodifferential oprators of the form A(A) = [, AMo(A)(z,-) dz, where X
is a linear form on symbols. We focus on two examples, the noncommutative residue and the canonical
trace.

20.1 Closed linear forms on symbols

Let U be a connected open subset of IR?. Let D(U) be a subset of CS5:(U). For any complex number
a we set DY(U) =DU)NCSe(U).

cpt
We borrow from [MMP] (see also [LP]) the following notations and some of the subsequent definitions.

Definition 35 For any non negative integer k anc complex number a, let

Q"D (U) = {aeQMTU), a= > ary(z,€) dér Aday
I,Jc{1,- n},|I|+|J|=k

with ary e DL (U)}
denote the set of order a classical symbol valued forms on U with compact support. Let

Q*DWU) = {acQTU), a= > oz, &) dér A da g
I,JC{1l,- n}|I|+|J|=k
with agg ED(U)}

denote the set of classical symbol valued k-forms on U of all orders with compact support.

Provided D(U) equipped with the star product is an alegbra, exterior product on forms combined with
the star product on symbols induces a product Q*D(U) x Q'D(U) — QFID(U); let

QD) := éQkD(U)
k=0

stand for the Z graded algebra (also filtered by the symbol order) of D(U)- valued forms on U.

Example 30 In particular, we consider the algebras QCSqp(U) of classical symbols valued forms, the

algebra QCS?N(U) = Uaez QCSE(U) of integer order classical symbols valued forms, the algebras

QCSIA(U), resp. QCSEe™(U) of odd- (resp. even-) classical symbol valued forms.

cpt cpt

Even though CS#%(U) is not an algebra, we can still build the set Q*C'S#%(U) := Uz QF CSe, (U)
of non integer order classical symbol valued k-forms and the set QCS#%(U) = @2 QFCS#%(U) of
non integer order classical symbol valued forms.

Whenever D(U) is stable under partial differentiation, exterior differentiation on forms extends to
D(U)-valued forms (see (5.14) in [LP]):

d:*DU) — QD)
2n

ap(,§)ds Ndxy — > Qo () du; Adéy A day,
i=1

where u; = &,0; = O, with the index ¢ varying from 1 to d and u; = x;,0; = 0., with the index ¢
varying from d + 1 to 2d.

As before, we call a symbol valued form « closed if da = 0 and exact if « = d 8 where (§ is a symbol
valued form; this gives rise to the following cohomology groups

H*D(U) := {a € Q*D(U), da=0}/{dB, BecQ"'DW)}.
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A linear form p : D(U) — C extends to a linear form?! j: QD(U) — C defined by
[) (O‘I,](xvg) dgn ASERRA dgiu‘ A dle ARERNAN deu‘) = p(aIJ) 6|I|+\J\—2da

with 4p < <ijp, 71 < <Jug-
We quote without proof an obvious but nevertheless useful result. Here D(U) is a subset of C'SZ(U).

Lemma 22 Let p: D(U) — C be a linear form. The following two conditions are equivalent:

(Fi,j€{1,---,n}, FIr€DU), st. 0=0,7€DU) or 0=0,,7€DU)) = plo)=0
(3B € QIDU)), a=dp €Q'DU)) = pla)=0

As before we call closed a linear form p obeying the second condition and by extension p is then also
said to be closed. We also say that p satisfies Stokes’ condition.

Remark 32 A closed linear form p on QD(U) induces a linear form p: H*D(U) — C.

Proposition 56 A linear form p: D(U) C CS:i(U) — C is closed whenever it vanishes on truncated

Poisson brackets in D(U), i.e whenever, for any non negative integer N
p ({a,f}im) =0 VYo,reDU), st. {07}V eDU)

where we have set: ol
{UaT}iN) = Z (i (0g00gT — 02105 0) . (20.211)

al
o] <N—1

Proof: If the linear form is closed, we can perform iterated “integration by parts” in the variables x
and ¢ and write:

—i)lel
p({a,T}iN’) = > S ;), p (0g000T — 02 00gT)

lal<N-1

(_7’)|a‘ o o « «
= Z e p(@wU(?gT—@maag 7')
la]<N-1
= 0.

Conversely, if the linear form vanishes on truncated brackets {-, -}iN) contained in D(U) then for any
o € D(U) such that 9,,0 € D(U) we have

pl0n.0) = ip ({€ o)) =0

and similarly for any o € C'S¢p(U) such that 0,0 € D(U) we have

p(Og,0) =ip ({:Ci, a}iN)) =0.
O

Definition 36 o If D(U) is closed in CS.(U) for the Fréchet topology on symbols of constant
order, we call a linear form p: D(U) — C (resp. p: QD(U) — C) continuous if it restricts to a

continuous map on D(U)*(U) = DU)NCSL(U) (resp. QD*(U) — C) for any complex number

cpt
a.

o IfD(U) contains the algebra CS~°(U) of smoothing symbols, we call a linear form p : D(U) — C
(resp. p: QD(U) — C) singular if it vanishes on CS~°(U) (resp. QCS °(U)).

21In the case of D(U) = CS#4(U), we need to weaken this assumption; in this case we say a map X : CS#Z(U) — C
is linear if it takes linear combinations to linear combinations.
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Example 31 Let S*U C T*U denote the cotangent unit sphere of U. Using Stokes’ theorem, one
checks that the singular continuous linear forms indexed by non negative integers k

resy, (o) ::/S o—dk(r,§)drds§
U

define closed linear forms on CS’:I’)’:(U) called the higher k-th noncommutative residue of o. When

k =0, then res = resq defines a closed linear form on CScpi(U).
Indeed, for a symbol o € CS**(U) we have (9¢,0)—ar(x,£) = O¢,0_ay16(x, &) so that by Stokes’
theorem applied to the boundaryless manifold corresponding to the cotangent unit sphere S;U, we have

/ (85io)_d,k(:c,§) dx dsf :/ < 85ia_d+17k(x,§)d5§> dr = 0.
*U U

5:U

On the other hand, since o has compact support in U, again by Stokes’ theorem we have:

/ (0n) sl ) drdst = /U o, ( /S

Example 32 Since the map JCIRd : C’S%(IRd) — C s closed, in a similar manner, one shows that
the map

Ud,k(‘rvg)dsg> dx = 0.

U

*
x

cs#wU) — C
o = o owgdsdn
U

is closed.

20.2 From closed linear forms on symbols to linear forms on operators

Let U be an open subset of IR? and D(U) a subset of C'S**(U) stable under partial derivatives

Ox;,0¢,,i =1, ,d and under multiplication by functions in CZ5,(U). If D(U) is a linear subset ** of
CS*’*(U), thlS makes lt a C(?Sc(U)-Smeodule Of CS*’*(U)
Let

S:={0€CS:..(RY), fooeDU)},

and let us assume that Co5 (U) @ S( R?) is dense in Dy (U) for the Fréchet topology of symbols of
constant order.
S is stable under partial differentiation O¢, since D(U) is.

Example 33 Corresponding to the algebras

Dy(U) = CSEi(U), Do(U) = CSepi(U), D3(U) =CS%

cpt cpt

(U), Dy(U) =CSU), Ds(U)=CS(U),

opt cpt
we have the following sets of symbols with constant coefficients

S =CSIH(RY), 8 =CS8ee(RY), S5 =CSLRY), Si=CST(R), S5 = O (R,
Corresponding to the sets

Ds(U) = CSEL();  Dr(U) = CSE(U); Ds(U) = CS&i(U); - Do(U) = CSe (U),

cpt cpt cpt

the latter corresponding to symbols of order a, we have the following set of symbols with constant
coefficients

So = CS(RY); Sy = CSH*(RY), Ss=CSIF(RY); Sy =082 (RY).

22We shall also consider subsets such as C'S#:*(U) := U, gz CS%*(U) which are not linear spaces.
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Since Coyy(U) ® S is dense in D(U), a continuous linear form A : S — C induces a linear map S
DU) — ngt(U)
o (@ Ao(2,)).
Integrating it along M yields a linear form:

X oDU) — C
o /)\(o(x,-))dx.
U

Example 34 1. If \ is the closed linear form resy on CSX:*( IRd), then AV is the k-th higher order
noncommutative residue on C’S;;ék(U):

res(o) = /S o—ak(z,§) dsé dx.
U

2. If X is the closed linear form f.. on CS#x(RY), then NV is the cut-off integral on OS;;IC(U):

][*UU_/*UU(Iaf)dsédx.

Proposition 57 With the above notations, we assume that S is stable under partial differentiations
and is invariant under the action o — oo T of the linear group GI( IRd). Then for any diffeomorphism
k:U— U,

0 €D(U) = k, € D(U') and k,o € DU’)
with the notations of Proposition 53.
Let A : S — C be a linear form. Provided \ is covariant i.e:

|det(T)| (o o T) = MNo) VT € GI(RY) Vo €S, (20.212)

and

wx (Op(0)) :== No(z,))dxy A -+ Ndxg
transforms covariantly under a diffeomorphism k : U — U’, i.e. for any o in D(U):
k*wy (k«Op(0)) = wx (Op(o)) Vo € D(U).
Proof: Recall that the symbol k.0 of £,Op(o) differs from k.o by a polynomial expression in &,

Pa(@,8) = D aap(x)E? 0go(-).

Lo
0<|B|<5

Since D(U) is stable under partial differentiation and multiplication by smooth functions with compact
support, ¢, lies in D(U). Since § is invariant under linear transormations, k.o also lies in D(U). It
follows that .o lies in D(U).

We now need to check that A(¢4(x,-)) = 0. Since the sum in the expression for ¢, runs over |3| <

% < |a| and A is closed, it follows from (2.19) that
Moo (z,-) =0 VaeU.

Combining this with dz’ = |det (dk(x))| do and the covariance property (20.212) of A\ applied to
T = (dr(z))", we infer that at point 2’ = r(z):

wi (5+(0p(0))) (') = A(kso

= W

(Op(0)) ().

23 As before, if S is not linear, we assume that ), resp. AU only preserve linear combinations lying in S, resp.D(U).

—~
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Remark 33 For future reference, let us observe that the two essential ingredients in the proof are the
closedness and covariance of the linear form .

In view of this covariance property, wy (Op(c)) (z) defines a global density on the closed manifold M.
Integrating it over M yields a map

A (Op(o)) = /M w3 (Op(0)) (@).

This map is defined on a set D(M) (stable under multiplication by functions in Cg5 (U)) of operators

in C¢**(M) determined by a purely symbolic condition given by the set S. By this we mean that the
localised symbol of an operator in D(M) in any coordinate chart (U, ¢) lies in D(¢(U)) C CScpi(p(U))
with the property that

S:={oeCS" (R, fooceDWU)}

is independent of the set U.

Corollary 11 With these notations, let us assume that S is invariant under the action of the linear
group GI(IR?) and under partial differentiation.
Any closed and covariant linear form X on S yields a linear form

A:DM) — C

A — / Ao (A)(x,-)) da. (20.213)
M

Remark 34 If X is continuous in the Fréchet topology of constant order symbols it induces a uniformly

continuous map o +— Ao (z,-)) in x on compact sets so that A is continuous in the Fréchet topology of
constant order operators.

O

Example 35 The higher noncommutative residue A = res, on S = C'S**(IR?) gives rise to the higher
noncommutative residue res, on D(M) = CL**(M):

res,(A) = /M resi(o(A)(x,-)) dx = /S*M o_arx(A)(x,&) ds& dz, (20.214)

where S*M C T*M stands for the cotangent unit sphere of M. When k = 0, this yields the ordinary
noncommutative residue on CU(M):

res(A) = / res(o(A)(x,)) de = / o_q(A)(z,§) ds€ dx. (20.215)
M 5*M
it 1s continuous in the Fréchet topology of operators of cosntant order.

One can read off this definition various straightforward but important properties of the noncommutative
residue:

e resg vanishes on operators of order < —d and hence on smoothing operators,

e res; vanishes on operators of non integer order since the —d-th positively homogeneous component
of their symbol vanishes,

e res; vanishes on differential operators for the same reason,
e resy is continuous for the Fréchet topology on operators of constant order.

Example 36 The cut-off integral X = f. on CS: (RY) whose restriction to S = CSF*(RY) ¢
Ker(resy,) is closed and covariant, gives rise to the canonical trace TR on D(M) = C¢#*(RY)
Ker(resy):

TR(A) = /M / o) (e )do = / o)) ds¢da, (20.216)
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Remark 35 The canonical trace can also be expressed in terms of the amplitude a(x,y,§) of the
operator A:

Au(e) = [ aleg & ulw) e ayae

by
TR(A) = /*Ua(x,x,ﬁ) dx dg.

Since the symbol

—)lel
)~ Y C opone ),

e’ )

differs from a(x,x,&) by partial derivatives, the canonical integral being closed on non integer order
amplitudes, we have:

]l o(A)(z, &) dx d¢ = a(z,z, &) deds VA e C1%* (M, E).
*U U

Since the cut-off integral JC]Rd is continuous on C'S**( IRd) in the Fréchet topology, so is the canonical
trace TR continuous in the Fréchet topology.

A further striking property of linear forms of the type (20.213) is that they vanish on operator brackets
in D(M).

Proposition 58 A linear form A on D(m) built from a continuous, closed and covariant linear form
A as in (20.213) vanishes on brackets:

[A,B] e D(M) = A([A,B]) =0 VA,BeD(M).
Proof: In view of (18.196), the symbol of the bracket [A, B] reads

—)lel
{o(A),0(B)}« ;NZ( ) (080(A)0%a(B) — 0¢a(B)dsa(A)) (20.217)

al

[e3

which is of order a + b where a is the order of A, b the order of B.

Combining the closedness of A which yields “integration by parts formulae” in £ and Stokes’ theorem
on M which yields “integration by parts formulae” in x with the continuity of the linear form A\ on
symbols of constant order, we infer that:

MAB) = [ MOp({o(a).o(B)}.)) da

N —o00 M

= Jim [ X (0p({o(4),0(B)Y)) da

It follows that A ([4, B]) = 0.

Definition 37 e A trace on a Lie algebra L is a linear form 7 on L which vanishes on brackets
of operators in L:

7 ([a,b]) =0 Va,be L.

o A graded trace on a graded Lie algebra GrL = @32 GriL is a family parametrised by k € Zy of
linear forms 1, on GriL, which vanishes on graded brackets:

The41 ([a,b]) =0 Vae Ly, be /L.
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Example 37 The higher order residues resy, k € Z define a graded trace on GrCe™* (M) = Y7 ) Gr,CL** (M

where Gr,CL**(M) = C¢**(M)/Ct** Y (M). since [L1]
A e Cr*(M),B e Cr*'(M) = res1; ([A, B]) = 0,
resp. a trace on CU(M) since for k =1 =0 this implies
AeClM),BeClM)=res([A,B]) =0,

as a consequence of Proposition 58 applied to A = res on & = CS:_’C]“(]Rd), resp. A\ =res on S =
CSc.o(R).

O

Example 38 The canonical trace TR on Cﬁm’*(M) deserves this name in so far as it vanishes on
brackets of operators in CL¥2* (M)

[A, B] € C/#%* (M) = TR ([A,B]) =0 VA, B e C{#%*(M),
resp. in CLP%(M)
[A,B] € C/#%(M) = TR[A,B]) =0 VA, B e CI{%(M),

as a consequence of Proposition 58 applied to X = . on S = CS#+(RY), resp. S = CSH(RY).
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21 A characterisation of the noncommutative residue and the
canonical trace

We provide a characterisation of the noncommutative residue ?* on the algebra of classical operators
and the canonical trace on non integer order operators.

21.1 The noncommutative residue: a first characterisation

Proposition 59 Any closed singular continuous linear form p : CScpi(U) — C is proportional to the
noncommutative residue.

Equivalently, any closed singular continuous linear form p : QCScp(U) — C is proportional to the
noncommutative residue tes extended to forms.

Proof: By Lemma 22, the two statements are equivalent. Let us prove the first one. Let p be a
closed singular continuous linear form on C'Scp(U). For any fixed f € O3 (U) the map py : 7

p(f 7) defines a singular linear form on C'S...(IR?) which vanishes on derivatives in ¢ since we have
p(f 0e;7) = p(O¢, (f 7)) = 0. By Theorem 1 which characterises the noncommutative residue in terms
of closed singular linear forms on classical symbols, it follows that there is a constant ¢(f) such that
p(f@7) = c(f)res(r) for any 7 € CSc.o(IR?). Since f — p(f @ 7) is continuous, p(f @ 7) = F(res(f @
7)) = F(f)res(r) for some continuous distribution F in (C(?}‘;t(U))/. A general symbol o € C'Sqpe(U)
can be approximated in the Fréchet topology of symbols of constant order by linear combinations of
tensor products f @7 with f € C(U), 7 € CSe.c(IRY). Tt follows from the continuity of p that there
is a distribution F' € (ngt(U))/ such that p(o) = F(z +— res(o(z,-)) for any o € CSgpe(U). This
distribution being continuous, it reads F(f) = [, ¥(x) f(z) dz for some ¢ € C*°(U) so that

pl0) = [ vl res(ota, ) do.

But since p is closed by assumption, for any ¢ = f @ 7 with 7 € CS,..(IR?) and f € C°°(U) we have
0=p00 (f@7)=p O f&T).

Choosing 7 with non vanishing residue and integrating by parts implies that
[ 0v@ s@)de = [ wix)on, fla)de =0 ¥f € CEU)
U U
Hence 9,,1) = 0 for any i € {1,---,d} so that 1 is a constant ¢ and p(0) = ¢ [, res(o(z,-))dz is
proportional to the noncommutative residue. 0O

Definition 38 A linear form on a subspace D(M) C CU(M) which contains smoothing operators is
singular provided it vanishes on these operators.

The following result provides a first characterisation of the noncommutative residue. The proof, which
uses the characterisation of the noncommutative residue on CScp(U) proved in Proposition 59, is
inspired by methods of [MSS] whose authors characterised the canonical trace.

Theorem 22 Any continuous singular trace on CU(M) is proportional to the noncommutative residue.
Proof: Let L: C¢(M) — C be a continuous singular trace. Given a local chart (U, ¢) on M, the map
py:=Log oOp

clearly defines a singular linear form on C'Scpi(¢(U)).

For any 0 € CScpi(¢(U)) and for any z;,7 = 1,--- ,n corresponding to the coordinates in the local
chart (U, ) we have?®

(Op(0¢,0)u) () = /}Rd ¢80, 0(2,€)a(€)d € = —i ([x7,0p(0)] u) (x)  Vu € CZ(U).

24This is only a first yet non optimal characterisation which will be refined later in these notes.
25We borrow this observation from [MSS] who use it to prove the uniqueness of the extension of the ordinary trace on
trace-class operators to non integer order operators.
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Furthermore,

Po(0g,0) = Log"oOpod (o)
= —iLo ¢* o avdwj © Op(U)
= —iLoad,, 0¢*oOp(o)
= —iL([z;,¢" o Op(a)]).

Since L vanishes on brackets, pg vanishes on derivatives d¢;0. Similarly, for any u € Cg5, (U)

(Op(@s,0)u) () = / @D, o(r, €)i(€)de

@) g (2, £)au(E dg—z/ &e' " oz, ©)a()de

oo [
o, / @) o (2, €)a(€)d€ — / @9 g (a, )y, u(€)d €

= [0, 0p(0)] u(z).

Furthermore,

p¢(6wja) = Lo¢"oOpod,(o)
= Loqﬁ*oadazjoOp(J)

= L ([8%.,(;5* o Op(J)D .

Since L vanishes on brackets it follows that p, vanishes on derivatives d,,0. It therefore satisfies Stokes’
property and defines a closed singular linear form.

By Proposition 59, ps which is continuous as a result of the continuity of L, is proportional to the
noncommutative residue so that there is a constant cg such that

ps(0) = L(¢*Op(0)) = ¢4 - res(a) Vo € CSepi(¢(U)).

We now use a partition of unity (U, x;)icr subordinated to an atlas (U;, ¢;)icr on M to write any
operator A € C{(M) according to (18.200) as A = ., Op(o;) + R(A) with o; € CSepi(¢:(Us)) and
R(A) some smoothng operator. Applying these results to each U;, we infer the existence of constants
¢;, 1 € I such that

L(A;) = pg; (03) = ¢i - res(o;) = ¢; - res(A;).

By linearity of L and since it vanishes on smoothing operators,we infer that
ch res(A4

But since the Lh.s is globally defined, the r.h.s is independent of the local chart and the constants are
independent of ¢. Hence, there is a constant ¢ = ¢; such that

A)=c- Zres(oi) =c-res(A).
iel
O

Remark 36 Similarly, any continuous singular graded linear form on GrC¢**(M, E) is a graded trace
proportional to the higher order residues resy, k € Zy [L1].

21.2 A characterisation of the canonical trace

We provide a characterisation of the canonical trace on non integer order operators. Our approach,
similar in spirit to the one adopted in [MSS], stresses the role of Stokes’ property of the canonical
integral on non integer order symbols.

Recall from Definition 6 that a subset S of C'S.. .(IR?) is admissible if it satifies the following conditions:
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1. it is stable under partial differentiation

ceS=0,0€eS Vie{l, -, d},

2. for o in S, the symbols 7; 4—j41 x With 7 ~ Zj‘io Ti,a—j X arising in the asymptotic expansion
(2.22) can be chosen in S.

Definition 39 Let us call a subset Dept(U) of CSept(U) admissible whenever
1. Depi(U) is stable under multiplication by functions in O (U),

2. the set
Si={r€CScc(RY), f&TEDp(U) VfeCSU)} (21.218)

s admissible.
Remark 37 Note that under these assumptions,
(Deps(U) C Ker(res)) = (S C Ker(res))
since res(f @ 1) =0 for any f in C5(U) and 7 in S implies that res(T) vanishes.

Example 39 The sets CSEZ(U) = Uygz CS% . (U),

cpt

CSo () ={o e CSopt(U), 0q—j(z,—E) = (—1)27 Oo—j(x,§) Ve eU with a=ord(o)}

cpt
and

CSe"(U) i= {0 € CSupnlU), 0as(w,~€) = (~1)* " 0, 5(2,6) Vo €U with a=ord(o)}

cpt

are admissible since we saw in the examples following Definition 6 that CSFZ(RY), €S (RY) and
C5even(RY) are admissible sets.

Here comes a local version of Theorem 2.

Proposition 60 Let D (U) be an admissible subset of CScpi(U) such that:

CSC(U) C Dept(U) C Ker(res).

cpt

If £ -y defines a closed form (i.e satisfies Stokes’ property) on Depy(U), then any other closed contin-
% linear form p : Dept(U) — C is proportional to the cut-off reqularised integral:

p:c-][ .
*U

Proof: Since Dy (U) is admissible, the set S defined by (21.218) is admissible; since Depy(U) lies in
Ker(res), S lies in Ker (res) so that the set S satisfies the assumptions of Theorem 2.
Using the density of CZ5(U) @ 8 in Dept(U) N CSE(U), where we have set S = SN CSse . (IRY),

cpt

uous

the problem boils down to finding bilinear linear forms (f,7) = b(f,7) on Cg5(U) x S that satisfy
Stokes’ property in each variable and which restrict to continuous bilinear forms on Cg5, (U) x §¢ for

all orders a. For fixed f € CZ5(U), such a bilinear form induces a closed linear form py : 7+ b(f, 7)
on § which by Theorem 2 is proportional to the cut-off regularised integral p(7) = ¢y f—]Rd 7 for some
constant cy.

On the other hand, since the map fe b( f,7) is continuous on CZ3, (U) and satisfies Stokes’ property,

cpt
for fixed 7 € S we have b(f,7) = ¢, fU x) dzx for some constant Cr.
Combining these two results shows that b f, = ¢ ([ f(z)dz) (fa7(£)dE) for some constant c.

With the help of the continuity and density assumptions, we 1nfer that

plo) =c /U da (]lm o(z,€) d§> =c- ]l*Ua(x,f) dzdf Vo € Depy(U).

i.e. its restriction to symbols of constant order is continuous.
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O
We are now ready to determine all closed linear forms on admissible subsets of C¢(M).
We call a subset D(M) of C¢(M) admissible if in any local chart (U, ¢) of M, the set

Depi(¢(U)) 1= {0 € CSepi(0(U)),  ¢* Op(o) € D(M)} (21.219)
is an admissible subset of C'S¢pi(d(U)).

Example 40 The sets Cr#% (M) of non integer order classical pseudodifferential operators on M,
CeY (M) ={A e CHEDM), o(A)~Y X0aj(A), oaj(A)(z,—E) = (=1)"To0a;(A)(z,)}
§=0

of odd-class operators on odd dimensional manifolds M introduced in [KV] (see also [?] where such
operators are called even-even) and

Cécvcn(M) _ {A c CéE(M), O'(A) ~ nga_j(A), Ua_j(A)(!E, —5) = (—1)‘1—]'-1-10'(1—]'(14)(:[;,5)}
j=0

of even-class operators on even dimensional manifolds M (see [?] where such operators are called

even-odd) are all admissible subsets of CU(M).
Theorem 23 Let D(M) be an admissible susbset of CU(M). We further assume that
Cl™>(M) Cc D(M) C Ker (res) .

Provided the canonical trace is well-defined on D(M) and vanishes on brackets in D(M) then any
continuous 2" linear form 28 L : D(M) — C which vanishes on brackets:

L([A,B])=0 VA, BeC{M) st. [A B]eDM) (21.220)
is proportional to the canonical trace:
JdeceC, L(A)=c-TR(A) VAeDM).

Proof: Given any local chart (U, ¢) on M, the set D(¢(U)) defined by (21.219) fulfills the assumptions
of Proposition 60 with U replaced by ¢(U); in particular D(¢(U)) C Ker(res) for if the operator residue
res ((bﬁOp(U)) vanishes then so does the symbol residue res(o).

From a linear form L on D(M) which obeys the requirements of the theorem, we build the linear form
pe = Lo ¢*Op on D(¢p(U)) which obeys the requirements of Proposition 60, from which we infer that
P is proportional to the cut-off regularised integral. Hence, there is a constant cg such that

pol(0) = L($Op()) = ¢4 '7[*¢<U> o Vo € Dot ($(U)).

As before, we use a partition of unity to write an operator P € C¢(M) as a finite sum P =
Yier $'Op(p;) + R(P) for some symbols p;,i € I in CSepi(¢i(Us)) and a smoothing operator R(P).
Since L restricts to a trace on the algebra of smoothing operators, by [?] (see Appendix), its restriction

to C¢~°°(M) is proportional to the L2-trace tr.
It follows by linearity of L that there are constants c4,,? € I and c such that :

LP) =Y e piten(R(P).

icl ¢:(Us)

But the constants ¢; coincide for the 1.h.s being globally defined, the r.h.s is independent of the local
chart. They further coincide with ¢ for a smooth perturbation of the symbol induces an extra con-
tribution to the trace on the smoothing operator. We conclude the existence of some constant ¢ such

27i.e. which restricts to a continuous map on D(M) N CL*(M) for any a € C.

28By linear we mean here that L(aA + 8B) = aL(A) + BL(B) whenever A, B and oA + 3B € D(M)
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that L(P) = ¢ f5..,,0(P) = ¢- TR(P). O

Here are a few known examples of sets D(M ) which obey Assumptions 1 and 2 of the above theorem. In
particular, they lie in Ker(res). Applying Theorem 23 to D(M) = C¢#% (M), resp. D(M) = CL° (M)
in odd dimensions, resp. D(M) = C¢***"(M) in even dimensions, leads to the following uniqueness
result.

Corollary 12 The canonical trace is (up to a multiplicative constant) the unique linear form on
CIE (M), resp. CL°YY(M) in odd dimensions, resp. CL°"(M) in even dimensions which is con-

tinuous on operators of constant order and which vanishes on brackets that lie in CﬁZ(M ), resp.
CeY (M) in odd dimensions, resp. CL*™(M).

Remark 38 In the course of the proof we showed that the vanishing of L on brackets (21.220) implies
Stokes’ property for py. Conversely, Stokes’ property for py implies that L(¢*Op(0)) := py(c) vanishes
on brackets [x;,-] and [Oy,, ] contained in D(M). But this implies that L vanishes on brackets [Py, -] €
D(M) where Py is the localisation of any classical pseudodifferential operator. Stokes’ property on
symbols and the vanishing on brackets of operators are therefore equivalent.

146



22 Complex powers and logarithms

22.1 Complex powers

We review the construction and properties of complex powers and logarithms of elliptic operators.

An operator A € C¢(M, E) has principal angle @ if for every (z,£) € T*M —{0}, the leading symbol
ol(A)(z,€) has no eigenvalue on the ray Lg = {re’®,r > 0}; in that case A is elliptic.

Definition 40 We call an operator A € CU(M, E) admissible with spectral cut 6 if A has principal
angle 0 and the spectrum of A does not meet Ly = {re’®,r > 0}. In particular such an operator is
invertible and elliptic. Since the spectrum of A does not meet Ly, 0 is called an Agmon angle of A.

Remark 39 In applications, an invertible operator A is usually obtained from an essentially self-
adjoint elliptic operator B € CU(M, E) by setting A = B+ wp using the orthogonal projection mp onto
the kernel Ker(B) of B corresponding to the orthogonal splitting L?(M, E) = Ker(B) @ R(B) where
R(B) is the (closed) range of B. Here L?>(M, E) denotes the closure of C*°(M, E) w.r. to a Hermitian
structure on E combined with a Riemannian structure on M.

Let A € C¢(M, E) be admissible with spectral cut 6 and positive order a. For Re(z) < 0, the complex
power A7 of A is defined by the Cauchy integral [Sel]
)
Af = — A2(A—X)"hdA
o 27T Fr,e o

where \Z = |\|7e*(28) with § < arg) < 6 + 2. In particular, for z = 0, we have A9 = I.
Here

Lg=T1,Ul7,UT}, (22.221)

where _
F71‘,9 = {pew,oo >p 2 ’f‘}
12, ={pe" 00> p>r}
Iy={re",6—2r <t<6},

is a contour along the ray Ly around the non zero spectrum of A. Here r is any small positive real
number such that T, g N Sp(A) = 0.

The operator Aj is a classical pseudodifferential operator of order az with homogeneous components
of the symbol of A} given by

ass (A3 = 5 [ Niban & N

where the components b_,_; are the positive homogeneous components of the resolvent (A —\I)~! in
(&, A#)). In particular, its leading symbol is given by (o(Af)(x, ek = ((o(A)(, f))L)Z and hence A}
is elliptic.

The definition of complex powers can be extended to the whole complex plane by setting AZ := AkAffk
for k € IN and Re(z) < k; this definition is independent of the choice of k in IN and preserves the
usual properties, i.e. Ayt Ap? = Azl+z2, Ak = Ak for k €Z.

Complex powers of operators depend on the choice of spectral cut. Wodzicki [Wol] (Ponge in [Pol],
see Proposition 4.1, further quotes an unpublished paper by Wodzicki [Wo2]) established the following
result.

Proposition 61 [Wol, Wo2, Pol] Let 6 and ¢ be two spectral cuts for an admissible operator A in
CU(M, E) such that 0 < 0 < ¢ < 2m. The complex powers for these two spectral cuts are related by

Aj — AG = (1—e"7) T0p 4 (A) 47, (22.222)
where we have set Iy 4(A) = A (ﬁ fFe , A A -t d)\) where I'g ¢ is a contour around the cone

Aoy :={petco>p>r, 0<t<o}) (22.223)
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Remark 40 Formula (22.222) generalises to spectral cuts § and ¢ such that 0 < 0 < ¢ + 2k7 <
(2k + 1)7 for some non negative integer k by

A — Ay =TT 4 (1 — €7 Ty 4(A)Af. (22.224)

If the cone Ay ¢ defined by (22.223) delimited by the angles 6 and ¢ does not intersect the spectrum
of the leading symbol of A, it only contains a finite number of eigenvalues of A and ITy 4(A) is a finite
rank projection and hence a smoothing operator. In general (see Propositions 3.1 and 3.2 in [Pol]),
ITp »(A), which is a pseudodifferential projection, is a zero order operator with leading symbol given
by 7g.4(c¥(A)) defined similarly to Iy , replacing A by the leading symbol o¥(A) of A so that:

o (o,6(A)) = mo.0(r(4)) i= o(4) (QL [ xtet - x dA) ,
1T To. s

where we have set o”(B)(x,¢) = o(B)(x,£) for any (z,£) € T*M and any B € CI(M, E).

22.2 The logarithm of an admissible operator

The logarithm of an admissible operator A with spectral cut 6 is defined in terms of the derivative at
z = 0 of this complex power:
logy(A) = aZAz\z:o'

Remark 41 For a real number ¢, A and A’; have spectral cuts € and t0; for ¢ close to one, (Ag)fe =
(AL)z and hence, (A})7, = Al so that

logy(A") = 0:(A§)ip)._, = 0:-(AF)| _, = tlogy A.
Just as complex powers, the logarithm depends on the choice of spectral cut [O1]. Indeed, differentiating
(22.222) w.r. to z at z = 0 yields for spectral cuts 0, ¢ such that 0 < 6 < ¢ < 27 (compare with formula
(1.4) in [O1)):
logg A —logy A = —2inlly 4(A). (22.225)

Formula (22.225) generalises to spectral cuts 6 and ¢ such that 0 < 0 < ¢ + 2kw < (2k + 1)7 for some
non negative integer k by
logg A —log, A = 2ik 7 I — 2irlly 4(A). (22.226)

As a result of the above discussion and as already observed in [O1], when the leading symbol % (A)
has no eigenvalue inside the cone Ay 4 delimited by I'g 4 then Il 4 which is a finite rank projection, is
smoothing.

Logarithms of classical pseudodifferential operators are not classical anymore since their sym-
bols involve a logarithmic term log|¢|. As the following elementary result shows, they are of log-
polyhomogeneous of log-type 1.

Proposition 62 Let A € CU(M, E) be an admissible operator with spectral cut 6. In a local triviali-
sation, the symbol of logy(A) reads:

Tlogy(4)(@,€) = a log [§|] + o0(A)(, §) (22.227)

where a denotes the order of A and oo(A) a symbol of order zero.
Moreover, the leading symbol of oo(A) is given by

e &
"¢l

In particular, if o(A) has scalar leading symbol then so have o¢(A) and o (Il 4(A)) for any other
spectral cut ¢.

o (A)(z,€) = log, <0L(A)( )) Y(z,€) € T*M — {0}. (22.228)
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Proof: Given a local trivialisation over some local chart, the symbol of A has the formal expan-

sion o(Az) ~ > >0 b,(fz)—j where a is the order of A and b((lzz)_j is a positively homogeneous func-

tion of degree az — j. Since logy A = BzAg‘zzo, the formal expansion of the symbol of log, A is

Ology A ™ ZJ>08 baz g|

Since Ag, =1, we have a(Ag)._
o) i(@,8))._o = do,41.

Suppose that £ # 0; using the positive homogeneity of the components, we have: b,(fz) (,8) =
|§|azb,(fz)( ,|£|) hence

o ~ I where now I stands for the identity on matrices. Thus

9:08) (2, €) = al i) ( ) 0.0 ( : )

It follows that
0.6 (2,€),_, = alog €[]I + 0.0 < |£I)

Iz()

Similarly for j > 0, we have  b\%)_ (x,8) = |§|“Z_jb(z),- (x, %) so that

az—j az—j

007 (x,€) = alog €]l€]* b7 ( |§|) g0, (w %) |

Consequently,

9,0 ~i9,h ( )
az— J(‘T é-) |§| az J |§| oo

The terms 9.b%2 (, %) and 9.0 ;(, %) are homogeneous functions of degree 0 in £&. Summing up,

we obtain

o (logg(A))(z,€) = a log|¢|I + 7' (2, €)
where o¢(A)(x, &) = 8zb((fz)( ; ‘5‘)|z o+ 2501770, baz S, %)b »- 00(A) is a symbol of order 0. Its
leading symbol reads (oo(A)(x, &)t = 8zb((fz)( x, |£| Moo = ( x, Ifl) 0 = logy ol (A)(x, E)
for any (x,&) in T*M — {0}. O R

Remark 42 Powers of the logarithm of a given admissible operator Q combined with all classical
pseudodifferential operators generate the algebra of log-polyhomogenous operators [Ouf:

CL~*(M,E) = @ Ct(M, E) log" Q = P log" Q CU(M, E).
k=0 k=0

22.3 Classical operators built from logarithms

Useful classical operators can be built from logarithms of operators, the first instances being the
difference of two logarithms and the bracket of a classical operator with a logarithm.

Proposition 63 1. Let A and B be two admissible operators in CU(M, E) with spectral cuts 6 and
¢ and positive orders a and b. Then

logy 4 logg € CO(M, E). (22.229)

a
2. Let QQ admissible operator in CL(M, E) with spectral cut 6 and and positive order q.Then
AeClM,E) = [logy, Q,A] € CU(M, E). (22.230)

Proof: This follows from (22.227).
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1. Indeed, with the notations of (22.227), the operator 12222 has symbol log || + M and the

operator loglf P has symbol log [¢] + M, so that their difference has symbol M -

oo(B)(,§)
b

which is classical of order zero.

2. By (20.217), the symbol of [log Q, A] is given by the star bracket

(=)

al

{o(logy Q). o(A)}. ~ 3

[e3

(0Fo(logy Q)07 o (A) — Og o (A)d; 0 (logy Q)) ,

in which the logarithm log |¢| only arises once, namely for o = 0 in the expression [¢ log |¢], o(A)]
which clearly vanishes. Thus [log, @, A] is classical.

O
Logarithms of operators naturally arise in determinants since their logarithms are expected to be traces
of logarithms. In that context we shall come across the following operator.

Proposition 64 Given admissible classical operators A with spectral cut 0, B with spectral cut ¢ and
their product AB with spectral cut 1), the expression

L(A, B) :=log,,(AB) — logy A — log,, B

1e8 1n , and has leading symbol L(o N T,z ).
l CL°(M, E) and has lead bol L(o"(A),o™(B H

Proof: By formula (22.225), another choice of spectral cut only changes the logarithms by adding an
operator in C(O(M , E) so that it will not affect the statement. As usual, we drop the explicit mention
of spectral cut assuming the operators have common spectral cuts.

If A has order a and B has order b then AB has order a + b, we have

o(L(A,B)) = o(log AB)(z,§) — o(log A)(z,§) — o(log B)(z,§)
= (a+0b)loglé|I+ oo(AB)(,§) — a log|¢|]
—0o(A)(x, &) — b log|é] I — ao(B)(z,§)
~ 00(AB)(z,§) — 0o(A)(z, ) — 00(B)(,€) (22.231)

so that the operator L(A, B) is indeed classical of order 0 and by (22.228) it has leading symbol given
for any (z,&) € T*M/M by

ﬁ@%mmm>=1%&mmuinw%Mw%—m&wx

1€l €
= L(cl(A), o (B)) <:17, é—|> .

B
e

O

One can also build classical operators from squares of logarithms.

Proposition 65 Let A, B be admissible operators in CU(M, E) with positive orders a,b and spectral
cuts 6 and ¢ respectively and such that AB (which is elliptic) is also admissible with spectral cut 1.
Then .

2
— %log¢B

=1 2an- Lo
K(A,B):= D) log,, AB 5a logy A

is log-polyhomogeneous of log-type one but

— K(A,B) € CI°(M,E), L(A,B) k’gTB — K(A,B) € C{°(M, E).

L(A, B) log A
a
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Proof: By formula (22.225), another choice of spectral cut only changes the logarithms by adding an
operator in C(O(M , E) so that it will not affect the statement. As usual, we drop the explicit mention
of spectral cut assuming the operators have common spectral cuts.

An explicit computation on symbols shows the result. Indeed, since o(log A)(x,&) ~ alog|¢| +
oo(A)(xz, &), we have

a(log2 A)(x, ) o(log A) x o(log A)(z, )

a* log” [€|1 + 2a log €] o0 (A)(z, €) + 00(A) (. €) - 00(A) (=, €)

—i)led
+ 3 E o (4) 2.9 9200 A) 0. €).
a#0

i

This yields:

ok (z,§) ~ logl¢](00(AB) — 00(A) — 00(B)) (x,¢)

+2(a1+ ) 00(AB)(w,£)00(AB)(z,€) + Y | iagao(AB)(x,g)DgUO(AB)(x,@
a0
— 50 A) oo (A)(,€) — 3 20800 (4) 1, ) Do (A) , €)
a#0
55 00(B) @ E)o0(B)(x,€) — 3 ~0g 00(B)(, ) Dioo(B)(r, )
a0

from which we infer that K (A, B) has a symbol of the form
o(K (4, B)) ~log|¢[(00(AB) — 00(A) = 00(B)) + 00(K).

It is therefore log-polyhomogeneous of log-type one.
On the other hand, (22.231) combined with (22.227) shows that the symbols of the operators L(A, B) %

and L(A, B) # differ from In|¢| (69(AB) — 0¢(A) — 00(B)) (z,£) by a classical symbol of order zero,
from which we infer the second part of the statement. O
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23 The noncommutative residue as a complex residue

Integrating over the underlying manifold the formula which relates the noncommutative residue on
symbols to a complex residue, expresses the noncommutative residue on operators in terms of complex
residues.

23.1 The noncommutative residue and canonical trace extended to matrix
valued operators

Given a closed manifold M, we saw that the (higher) noncommutative residue, resp. the canonical
trace on operators in C¢** (M) are of the type

M) = [ Mo ) e

where \ is the (higher) noncommutative residue, resp. the canonical integral on symbols. This can be
extended to operators in C¢** (M, E) where 7 : E — M is some finite rank vector bundle, by inserting
the matrix trace tr:

A(4) = /M Ar(o(A)) (@, ) da. (23.232)

Applying (23.232) to A = res, and A = res yields the higher and ordinary noncommutative residue on
matrix valued operators.

Definition 41 The higher noncommutative residue of an operator A & Cf*’k(M, E) is defined by

res,(A) = /S*M tr(o_q.r(4)) (x, &) ds dz, (23.233)

where S*M C T*M stands for the cotangent unit sphere of M. When k = 0, this yields the ordinary
noncommutative residue on CU(M, E):

res(A) = / tr(o_q(A)) (z,&) ds du. (23.234)
5*M

As in the case of scalar valued operators, higher order residues resy,k € Z, define a graded trace
on GrCl**(M,E) = Y52, Gr,Cl**(M, E), where Gr,C¢**(M,E) = C{**(M,E)/Ct** (M, E).
since [L1]

AeCt**(M,E), B € Ct*'(M, E) = resj,1; [A, B]) = 0,

resp. a trace on CU(M, E) since for k =1 = 0 this implies
AeClM,E),B e ClM,E) = res[A,B]) =0.

Applying (23.232) to A = JCIRd gives rise to the canonical trace on non integer order matrix valued
operators.

Definition 42 The canonical trace of an operator A & Cﬁ%’*(M, E) is defined by

TR(A) = ]Z*M tr (o(A)) (x,&) d¢ dx. (23.235)

As in the case of scalar valued operators, the canonical trace vanishes on non integer order brackets

[A, B € Ct#*(M, E) = TR([A, B]) = 0.
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23.2 A fundamental formula

Given an operator A € C4(M, E) and an admissible elliptic operator @ € C¢(M, E) with positive order
and spectral cut 6, the family
2= AQy "

yields a holomorphic family of pseudodifferential operators in the following sense.

Definition 43 Let (A(2)).cq be a family of classical pseudodifferential operators in CU(M, E) with
distribution kernels (x,y) = K a2 (x,y). The family is holomorphic if

1. the order a(z) of A(z) is holomorphic in z,

2. in any local trivialisation of E, we can write A(z) in the form A(z) = Op(o.) + R(z), for some
holomorphic family of End(V')-valued symbols (o(z)).cq where V is the model space of the fibres
of E, and some holomorphic family (R(z)).cq of smoothing operators i.e. given by a holomorphic
family of smooth Schwartz kernels,

3. the (smooth) restrictions of the distribution kernels K () to the complement of the diagonal
A C M x M, form a holomorphic family with respect to the topology given by the uniform
convergence in all derivatives on compact subsets of M x M — A.

A holomorphic family of log-polyhomogeneous operators of holomorphic order a(z) parametrised by
Q) has integer order > —d on the set Q Na~! (Z N [—d, o). Outside that set, the canonical trace
TR (A(z)) defines a holomorphic map in the complex variable z.

Theorem 24 [KV][L1] Let for any non positive integer k, z — A(z) € C¢*)F(M, E) be a holomor-
phic family of log-polyhomogeneous symbols on a domain @ C C. Then the map

z— TR (A(2))

is meromorphic with poles at points zj € QN a~ ! ([—d, +oo[NZ) of order < k + 1.
For any A € C**(M, E) and any holomorphic family A(z) € C£**(M, E) with order a(z) such that
A(0) = A and &/ (0) # 0, the following expression defined in terms of the complex residue of order k+1
at 0:

resp(A) 1= (=1)*1 (o/(0)*"" Res* I TR (A(2)), (23.236)

(
is independent of the family A(z).
When k =0, i.e. for A€ CEO‘(Z)(M, E) there are only poles of order 1 whose residues are given by

Res,—., TR (A(z0)) = — () res(A(zo)). (23.237)

Remark 43 These formulae provide an alternative way to define the (higher order) residue from the
canonical trace, namely via complex residues in terms of the canonical trace.

Proof: Applying formula (7.53) relative to the residue of cut-off regularised integrals of holomorphic
families of symbols to the holomorphic family of symbols tr (c(A(z))), yields the meromorphy of the
map z — fatr (0(A)) (2)(z, €) d§ with poles at most of order k + 1. Moreover, at a pole zy we have

(_1)k+1
(o(20))" "
Outside the poles, the operators have non integer order so that fi. tr (o (A(2))) (z,€) d¢ integrates

over M to TR(A(z)). Since z — fpatr(o(A(2))) (z,€)d¢ defines a meromorphic map with poles of
order < k+ 1 so does z — TR(A(z)). Integrating (23.238) over M leads to (23.237). O

Resi ][Rd tr (o (A(2))) (z,8) d€ = res; j; (0 (A(z0)(z,))) . (23.238)

Remark 44 This formula applied to zo = 0 and A(0) = A gives back known properties of the non-
commutative residue.

153



1. When A has order < —d or non integer order, the same holds for the family A(z) in a small
neighborhood of 0 so that Tr(A(z)) has no pole in that neighborhood and defines a holomorphic
map. Consequently, resy(A) which is proportional to the residue at 0, vanishes.

2. Given two log-polyhomogeneous operators A, B of log-types k, 1 respectively, and two holomorphic
families A(z) and B(z) of log-types k,l respectively such that A(0) = A, B(0) = B and o/ (0) # 0,
B'(0) # 0 and o/ (0) + #(0) # 0, the bracket C(z) := [A(z), B(z)] defines a holomorphic family
of order v(z) := a(z) + B(2) of log-tye k + 1 such that C(0) = [A, B] and ~'(0) # 0.

By (23.236) applied to C(z) and zo = 0 we get:

res([4, B]) = (—1)"*1 (o/(20))""" Res®' TR ([A(2), B(2)]) = 0.

Here we have used the property that the canonical trace vanishes on brackets of non integer order
operators.

Theorem 24 applied to A(z) = AQ,” where @ is an admissible operator in C¢(M, E) with spectral
cut 6 and positive order ¢, yields a meromorphic extension

" (A,Q)(2) == TR (AQ; "), (23.239)

of the generalised (-function

C(A,Q)(2) ==Tr (AQy7), (23.240)

which is holomorphic on the half plane Re(z) < %d. Its poles and finite part are given by the following
formula.

Proposition 66 For any A € C’é*’k(M, E) and any admissible operator Q € CU(M, E) with spectral
cut 0 and with positive order q, (J*" (A, Q)(z) has poles of order < k+1 in the discrete set {%H, ke
Ny} expressed in terms of higher order residues:

Resg ' G (A, Q) (2) = ¢ resy(A). (23.241)
When A is classical, the pole is simple and

Reso(p* ™ (A, Q)(z) = qres(A). (23.242)
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24  Tracial anomalies/discrepancies

One way to extend the canonical trace TR beyond non integer order operators, namely to an integer
order operator A, is to pick the constant term in the Laurent expansion of the canonical trace TR(A(z))
of some holomorphic perturbation A(z) of A around zero. The choice of constant term depends on
the choice of regularised evaluator. In spite of their name, the resulting linear forms called regularised
traces, are not traces in so far that they do not generally vanish on brackets, thus leading to anomalies
or discrepancies.

24.1 Holomorphic regularisation schemes

Let

Holy (CU(M,E)) = (z+> A(z) € CU{(M,E); A(z) holomorphic (24.243)
and Jg€ RT st. A(z) has order «fz) with Re(d/(0)) < —q),

respectively,

Holy (C¢**(M,E)) = (z+ A(z) € CL**(M,E); A(z) holomorphic (24.244)

and 3Jg€ R st. A(z) has order a(z) with Re(d/(0)) < —g),

be the algebras generated by holomorphic families of classical, respectively, log-polyhomogeneous op-
erators of order «(z) with Re(a/(0)) < —¢ < 0 for some positive real number g.

Definition 44 A holomorphic regularisation scheme on CU(M, E), respectively CL** (M, E), is a
linear map

R:CUM,E) — Holy(CUM,E))
A = (2= A2))

respectively

R:CO*(M,E) — Holy (CO™*(M,E))
A = (2 A7),

such that A(0) = A and which preseres the logarithmic type i.e. for any mon negative integer k the
following implication holds A € C¢**(M, E) = A(z) € CL**(M, E).

Remark 45 In practice we restrict ourselves to holomorphic regularisations A — A(z) that send an
operator A to a holomorphic family with symbols z — «(z) affine in z.

Example 41 (- regularisation
R A A(2) = AQ, "

with Q an admissible operator in C4(M, E) with positive order q and spectral cut 0 yields typical (and
very useful) examples of holomorphic regularisations.

24.2 Regularised traces

On the grounds of Theorem 24, given a holomorphic regularisation R, we can pick the finite part in the

Laurent expansion TR (A(z)) by means of a regularised evaluator ev® and set the following definition.

Definition 45 A holomorphic regularisation scheme R : A — A(z) on CUDM,E), respectively on
Cl**(M, E), induces a linear map:

TR .C**(M,E) — C
A = TrR(A) = evy ® (TR (A(2))),
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respectively
R Ccr*(M,E) — C
A TrR(A) = eviy® (TR (A(2))),

which we call R-regqularised trace.

Lemma 23 Let R : A — A(z) be a holomorphic regularisation.

The linear form Tr™® extends the usual trace (defined on operators of order < —d) as well as the
canonical trace TR (defined on non integer order operators) to ydos of all orders. In both cases we
have:

TrR(A) = lim TR (A(2)) = TR(A).

Proof: For an operator A of order < —d, A(z) is also of order < —d in some small neighborhood of
0 so that on that neighborhood, the map z — tr(A(z)) is holomorphic at z = 0 and coincides with
z +— TR (A(z)). Hence,

TrR®(A) = lim TR (A(2)) = lim Tr (A(2)) = Tr(A) = TR(A).

z—0 z—0

Similarly, given an operator A of non integer order, A(z) is also of non integer order in some small neigh-
borhood of 0 so that on that neighborhood, the map z — TR (A(z)) is holomorphic at z = 0. In that
case, one can check from the definition of the cut-off regularised integral that lim. .o {4 tr (0(A(2))) (2, &) d€ =

Fra tr (0(A)) (z,€) d€ so that
TR (4) = lim TR(A(2)

=/, <][T;Mtr (o(A(2)) (x,f)cz‘s) dx

_ ]l tr (0(A)) (x,€) ¢ do
* M
— TR(A).
O

Regularised traces associated with a (-regularisation scheme
RO:A— AQ,7,

where () is some admissible operator in C£**(M, E) with positive order and spectral cut 6, are called
weighted traces. With the notations of (23.240), the Q-weighted trace of an operator A in C£** (M, F)
is defined by:

Tr?(A) :=evo (TR (’RQ(A)(Z))) =evo ((M(A,Q)(2)) . (24.245)

These correspond to generalised zeta functions:
Co(A,Q)(0) = Trg'(A); Cou(0) := Tr (1),

When A has order with real part < —d, then Tr(A) = Tr(A) so that the weighted trace coincides
with the L2-trace; thus, weighted traces provide linear extensions of the L?-trace.
The following theorem provides a useful explicit local formula of the classical operator

L(A,B) =log AB —log A —log B.
Proposition 67 Let A and B be two admissible operators with positive orders a and b in CL(M, E)
such that their product AB is also admissible. We have the following identities for weighted traces:

d d

— —  tr(L(AY, B*) =0
dt |t=0 dt |t=0 (LA BR)

trB(L(A", B*)) = 0,
as well as for the noncommutative residue:

_ topry) —
dt\t:oreS(L(A’B )) =0.
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Proof: Let us prove the result for the B-weighted trace; a similar proof yields the result for the
A-weighted trace. By Proposition 70, weighted traces and the residue commute with differentiation on
constant order operator so that

d d
- Q topry)) — @ (2 t pu
g, T (B B) =T (dthoL(A B ))
resp.
d
— t ~Y) — - t %
dt|t:0res (L(A", B")) = res (dtt_O(L(A , B )) .
But
d

d d
—  L(A", B") = — log(A'B*) — —  log A".
dt |t=0 (4% B) dt|t=0 08( ) dt |t=0 8

We therefore apply Lemma ?? to A; := AtBH so that Ag = B*, including the case y = 0 for which
A; = At and Ay = I. Since Ay = log A B* and Ag Agl = log A, implementing the weighted trace Tr?
yields

d

- B Lt
dtltonr (log(A*B"))

K \k
= TrP(logA) + ) (k i)l trf (adl;,. (log A B*) B~y 4 TvP (R (BH,log A BM))
k=

—

for arbitrary large K, with remainder term

Rg(B"logAB") = —— (—/ S [(/\—B“)_l,adgu(logAB“)} (A — B~ (K+D d/\)
Fa

[==0

d )
_ K el z _ ppy—1 o _ pp—(K+1)
adk, <dz (% /F N [(A = B*)"Y logA B*] (A — B") d)\)|20> :

since B commutes with B*.
For any positive integer k, by (24.252) we have

TP (adfy, (A B B-#0H0) - = TP (adps (ady! (4 BY) B0
= T8 (adBu (ad’gzl(A B B—u<k+1>))

1
= —yTes (ad’zf;l (A B*) B~k [BE Jog B])
since B commutes with log B. A similar computation shows that Tr? (R (B*,log A B*)) = 0. Thus

d

@ TP (log(A'B")) = Tr? (log A) .

It follows that %h:onB (log(A*B*)) = Tr? (log A) independently of 1 so that

d

il B topry) —
dt|t:0’I‘r (L(A,B )) 0.

Similarly, replacing the weighted trace Tr” by the noncommutative residue res and using the cyclicity
of the noncommutative residue, yields

_ L pry) —
dtlt:Ores(L(A,B )) =0.

O

The following local formula for the weighted trace of L(A, B) will later lead to a local formula for
the multiplicative anomaly of the zeta determinant. We also show that the residue of L(A, B) vanishes,
which will yield back the multiplicativity of the residue determinant derived in [?].
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Theorem 25 For two admissible operators A, B € CU(M, E) with positive orders a and b such that
their product AB is also admissible, we have

res(L(A4, B)) = 0. (24.246)
Moreover, there is an operator
W(r)(A, B) := %‘ L(A', A"B) (24.247)
t=0

in CL°(M, E) depending continuously on T such that

T?(L(A, B)) = /Olres (W(T)(A,B) (locgli‘ff) - loqu» dr (24.248)

where Q is any weight of order q.

Proof: By Proposition 67, we know that %“:Ores(L(At7 B)) = %”ZO’I‘rQ(L(At, B)) = 0. We want to

compute%‘t:Tres(L(At, B)) = %‘tzores(L(A“”, B)) and %It:TTrQ(L(At, B)) = %‘tZOT‘rQ(L(AHT, B)).
For this we observe that

L(AB,D) — L(A,BD) = —log(AB) —log(D) + log A +log(BD) = L(B,D) — L(A, B)
Replacing A by A, B by A™ and D by B, we get
L(A™™ B) — L(A", A"B) = L(A",B) — L(A", A™) = L(A", B).

Implementing the noncommutative residue, by Proposition 67 we have:

res(L(A", B)) = res(L(A"™7, B))

a\t:r E\t:O

d

= — L(A'", A™B
(LA A7)

= 0.

Hence .
d
res(L(A, B)) = ; E‘t:Tres(L(At,B)) dr +res(L(I,B)) =0, (24.249)

since L(I, B) = 0.
If instead we implement the weighted trace Tr?, we have:

d
dt [t=T

d
TL(ALB) = < QLAY B)

dt |t=0

d

= —  T9(L(A', ATB)).

dt |t=0
Since A and B have positive order so has A™ B, so that applying Proposition 67 with weighted traces
trd” B yields:

4
dt |t=0
_ i AT B t T
= G AL ATR))
4
dt jt=0
d T

- ° (TrQ(L(At,ATB))—trA B(L(At,ATB))).
dt |t=0

d

@ QAR —
dutzfﬂ (L(4"B)

Tr9(L(A', A™B))

(TrQ(L(At, ATB)) — 7B (LAY, ATB)))
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Applying (24.251) to @1 = Q and Q2 = A™ B, we infer that

d (LAY, 47B)) — A P(L(A", A7 B)))

dt |t=0
S res | L(A", A" B) log(A"B) _ log @
dt |t=0 at +b q

log(A™B) 10gQ>) |

at +0b q

= res (W(T)(A, B) (
where ¢ is the order of @ and where we have set W(7)(4, B) := < L(A!, A"B). Since L(I,B) =0,

T dt|t=0
we finally find that

Tr?(L(A, B)) = Te9(L(AY, B)) — Tr9(L(A°, B))

- /01 res <W(T)(A,B) <1°§£{f) - 10%1@)) dr. (24.250)
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24.3 Discrepancies

Regularised traces depend on the choice of regularisation and are not cyclic in spite of their name. To
simplify the presentation we restrict to classical pseudodifferential operators, but the formulae could
be extended to log-polyhomogeneous operators.We also focus on (-regularisation schemes.

Proposition 68 1. Given an operator A in CU(M, E) and two admissible operators Q1 and Q2 in
CU(M, E) with positive orders q1 and q2 and spectral cuts 61 and 0,

10g91 Q1 B 10g92 Q2>
q1 q2

Try'(A) - Trg;); (A) =res < (24.251)

which is a local expression.

2. Given two operators A and B in CU(M,E) and an admissible operator Q in CU(M,FE) with
positive orders q and spectral cut 0,

TeQ ([A, B]) = %res (A[B,logy Q). (24.252)

Proof: For simplicity we drop the explicit mention of the spectral cuts in the notations.

1. By (22.229), the difference 1"%1 Q _ IO%DQI is classical. On the other hand, for any admissible
operator @ in CU(M, E) with positive order ¢ we have:

1
q

Tr?(A) = evic® (TR (AQ 7)) = evic® (TR (A Q—%)) — TR (A).

A Q q1 Q q2
The result then follows from (23.237) applied to A(z) = M which is a holomorphic

z

family of operators with holomorphic order @ — z and coincides with A ( 1"%1% — 1"%}%) at z = 0:

Tr9(A) — Tr¥2(4) = Tfo% (A)—TTQ;% (A)
= ovy# (TR (4 (@7 —Q;_)) z
- e (18 (1 (4 (07 - %))

os (loggl Q1 _ 10g92 Q2)
q1 q2 '

2. We simplify notations dropping the explicit mention of spectral cut. We first observe that by
(22.230) the operator [B,log Q] A is classical The statement then follows from (23.237) applied

to the holomorphic family A(z) = [B.o "14 Q A of operators of holomorphic order a + b — gz which

coincides at z = 0 with the operator —[B log Q] A. The cyclicity of the canonical trace on non
integer order operators which yields TR ([C(z), D(z)]) = 0 as an identity of meromorphic maps
for holomorphic families C'(z) and D(z) with order c—q z, d—q z and g > 0 leads to the following

identities:
C(AB) = evy® (TR (4, B]Q7%))
= evg* (TR (ABQ 7)) —evp® (TR(BAQ™))
= ovi® (TR(Q™2ABQ™2)) —evi® (TR (Q™*/2 BAQ™*?))
= evog(TR(BQ *A-Q 7 BA))
= evy® (TR([B,Q 7] 4))

— Reso (TR ( A))

es ([B,log Q] A)

>—~>QI>—~

= s (A[B,log Q])
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Corollary 13 The logarithm of an admissible operator Q in CL(M, E) with positive order q and spec-
tral cut 6 has well defined residue and

C.0(0) = —%reS(loge Q). (24.253)

If (0,0(0) # O then Trg is not tracial.

Remark 46 Formula (24.253) is a special instance of a more general formula to be proven by other
means in the next section.

Proof: Let us prove the first part of the corollary. For simplicity, we drop the explicit mention of
choice of spectral cut.

Since the noncommutative residue is local, we can restrict to a local trivialisation around a point x
and choose two differential operators A = z; ® Iy, resp. B = 0,; ® Iy, where V is the model space
for E. Then

T ([A, B)) = 6;; Te9(I) = % res (v; [0, log Q]) .

Since o(B) = i§;, it follows that o([0,,,log Q]) ~ 0;;0(log Q) and o(A[B,log Q]) ~ x; 0,0 (log Q), so
that by integration by parts we have:

res (A[B,log Q]) = /S*M tr (0_q(w; [0s,,l0g Q) dzdsé = —6b;; o tr (o_q(log Q)) dx ds& = —d;jres(log Q).

Thus,
1
Tr9(I) = —-res(log Q).
q

The second part then follows from (g(0) = Tr?(I) = Tr? ([z;,8,,]). O

Example 42 If M is an odd dimensional Riemannian manifold and A, the corresponding Laplace-
Beltrami operator whose orthogonal projection on the kernel is denoted by w4, then Q = Ay + my is
invertible and (see e.g. [R] Theorem 5.2) (a,+x,(0) = 0, whereas one expects a non vanishing local
expression (a,4+x,(0) = —3 res(log(Ag + my)) in the even dimensional case.

Remark 47 The above constructions extend to weighted supertraces sTr® defined similarly to the
ordinary weighted traces up to the fact that the ordinary vector bundle E is replaced by a Za-graded
bundle and the corresponding fibrewise trace by a supertrace on graded operators. As we shall see
later on in these notes, if Q = D? + wp is the admissible operator built from an odd (for the Zs-
grading) admissible operator D in CL(M,E) with order d and the orthogonal projection wp onto its
finite dimensional kernel Ker(D), then the above formulae read:

ind(D) = s¢g,0(0) := STyP 7o (I) = —%res(log(D2 +7D)),

where ind(D) is the index of the operator D.

In particular, if there is an operator D with non zero index then the weighted supertrace sTr” 7o
not cyclic.
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25 Defect formulae for regularised traces

We discuss the non locality of weighted traces on the grounds of defect formulae, from which we also
derive their continuity on operators with constant order. We end this section with an alternative
characterisation of the noncommutative residue.

25.1 Regularised traces; locality versus non locality

In general, the expression of the finite part evy™® (TR(A(z))) involves both local and global terms as
the following theorem shows.

Theorem 26 [PS]

1. Let, for some non negative integer k, z — A(z) € Cﬂo‘(z)’k(M, E) be a holomorphic family of
log-polyhomogeneous symbols parametrised by z € ), a domain of C with order z — a(z) affine
in z. Then for any zo € Q such that ’(z0) # 0 we have

evic® (TR (A(2))) = /M (]ZT

*
x

oA e N~ (D! A ;
_r(o(A0)) (2:) “ZW( (0)) | da
- (25.254)

where we have set

res; 1(A) ::/ tr(o_q(A))(z, &) dE.
SxM
2. In particular, for a holomorphic family z — A(z) € CEO‘(Z)(M, E) of classical symbols, we have

evi® (TR (A(2)) = /M <]ZT tr (o(A(z20))) (x, &) d€ — ﬁresﬂfl’(z@)) d£25.255)

M

where we have set
res; (A) ::/ tr(o_q(A))(x, &) d€.
SzM
Remark 48 It is not a priori clear that the r.h.s of (25.254) and (25.255) are well defined; it follows
here from the fact that the l.h.s is well defined.

Proof: The corresponding formulae (9.66) readily derived on the level of symbols applied to o(z) :=
tr(o(A(z))) yield

]Z tr(o(A(2)))(z, ) d§> ][ tr (o(A(20))) (&) d§
R4 R

+ i iresm (A(Hl)(zo)) .

1=0 (a/(zo))lﬂ

Since the Lh.s integrates over M to a well defined quantity

VISt (TR (A(2))) = eviss ( /| (fT |t o(AG) (@.6) d‘£> da:>

and the result follows. O

Corollary 14 Given a holomorphic reqularisation scheme R : A — A(z) on CL*"(M, E) that sends
an operator A to a holomorphic family A(z) with order o(z) affine in z we have

() = [

M

L (-t (1+1)
]{r (e A)@,0) de + 3 PO (A (0)) dw (25.256)
where we have set

resy (B) 1= /*Mtr (o—ai(B)) (z,§)dg.

x
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In particular, for any holomorphic regularisation R : A — A(z) on classical symbols that sends an
operator A to a holomorphic family A(z) with order a(z) affine in z, we have

/M ][;M (tr(a(A)) (z,8)dE — #O)resx(/l’(()))) de, (25.257)

res; (B) := /*Mtr(o_d(B))(:C,é) dg.

Thus Tr’®(A) is an integral over M of a sum of a local term Zf:o %resu (AU+D(0)) involving

where we have set

only a finite number of components of the symbol of A and a global term f. tr (0(A)) (z,£) d¢. In
some cases Tr’¥(A) reduces either to a local or to a global term.

Corollary 15 Let R : A— A(z) be a holomorphic regularisation on classical pseudodifferential oper-
ators that sends an operator A to a holomorphic family A(z) with order a(z) affine in z.

1. f fpatr(o(A))(z, &) dE = 0 then res (A’(0))) == [, res, (A’(0))) da is well defined and we have:
R _ 1 /
™ (A) = —o/(()) res(A’(0)),
which depends on the first jet of R at zero.
2. Ifres, (A’(0))) = 0 for any x in M then TR (A) = f..,, A))(x, &) d¢ dx is well defined and
we have
T (A) = fp,_ TR(A(2)) = TR(A), (25.258)

independently of the choice of R.

Proof The existence of the various integrals over M together with the identities easily follow from the
above corollary. O

25.2 Zeta regularised traces: locality versus non locality

The results of the previous paragraph apply to the (-regularisation scheme R? for some admissible
operator @) in C¢(M, E) with spectral cut 6 and positive order q.

Theorem 27 For any A € Cé*’k(M, E) and any admissible operator Q € CU(M, E) with spectral cut
6 and with positive order q, Co(A,Q)(2) = TR(AQ,*) has poles of order < k+ 1 in the discrete set
{%H,k € Ny} and we have

Resg ™' (A, Q)(2) = ¢" resy(A). (25.259)

The finite part
Tig (4) = evy’® (Co(A4, Q) = evg™® (TR(A Q7))

reads: i
T§ (4) = /M <TRI(A) +Z%resm (A loght? Q)) dz (25.260)
1=0
where we have set TRy ( JCT* trpoa(z,§)dg.
If A is classical this bozls down to
TréQ (A) = /M (TRw(A) - éresm (A logy Q)> dx. (25.261)

If A'is a differential operator, then res, (A logy Q) integrates over M tores(A log Q) := [, res, (Alogy Q) da
and (25.261) further boils down to a local formula for the weighted trace:

Trd (A) = —%res (Alogy Q). (25.262)
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Corollary 16 With the above notations

Teg T (A) = T (4)
for any smoothing operator R.
Proof: It follows from (25.261) that

Trg ™ (4) = Tef (4)

since logy(Q+ R) = logy Q+ R’ (notice that the spectral cut is unchanged) for some smoothing operator
R’. This follows from the very definition of the logarithm using the fact that on the resolvent level we
have (Q+R-N)"1=(Q—-N"'1—(Q+R-N"TRQ-)N"t O

Formula (25.260) shows how the weighted trace of A splits into local terms involving the noncom-
mutative residue and a global term involving the canonical trace density TR, (A).

The following proposition proved in unpublished work with Simon Scott, provides an explicit de-
scription of weighted traces of logpolyhomogeneous pseudodifferential operators of the type Alogk Q
for some admissible operator (Q with A classical.

Proposition 69 Let A € CU(M,FE) and let Q be a classical admissible pseudodifferential with positive
order and spectral cut 6. For any mnon negative integer k the Q-weighted trace of A loglg Q has the
following description:

Trg (A logh Q)

k 1)i+1
= /M dx <TRw(A logh Q (Z 1 ) res, (A logh ™ Q)) . (25.263)

l

Proof: We want to apply equation (25.254) to A(z) = A logh Q Q, °, the order of which is a(z) =
—q - z+ a where a is the order of A. With the notation o ~ 7% o() log! |€], we first compute

)0 = (owAtbee) " o)

o) (A logh Q) * (0(Q; )™ (0)
— (_1)l+1 op (A log]; Q) U(long Q).

2

It follows that
tre (A log} Q) = fp._TR(A(2))

= / dz (TRI (A logh Q)
M

k _1\I+1
Z qlgf%l)—l-l) res, ( o (A loge Q) * oy loglJrl Q))) )
1=0

+

But

(7a1ste),

[UA (q log [¢] + (o108, @ )(o)) ook (q log [¢] + (UlogeQ)(O))}

2

®

[
Wk

¢ [log? €] 0(A) % 0(0) 108y Q) * - % 7(0) 108y Q)] quad  ((k — ) times)

= d'o(A)xo()(logg Q) x---0(0)(logg Q) ((k—1) times).

<.
o
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Hence,
k I+1
res; (U(l)(A logy Q) * o(log, Q))

= ql/ (74 % (@108, @)0) %+ * (0105, @)(0) * Tt ) (k—1) times
S:M -

= ql / (O'A*UlogeQ*"'*UIOgeQ*UlongQ) (k—l) times
S* M 0 —d
since the other terms vanish

= [ (conta)

= g'res, (A 1ogk+1 Q) ,

which yields (25.263). O

Applying this to A =1 and k =1 yields:

Corollary 17
Co.0(0) = =T’ (logy Q)

= —/ dx (TR (logy Q) — ! — res, (log) Q)) (25.264)
M 2q

25.3 Weighted traces of families of operators

The following technical proposition shows that the canonical and weighted traces as well as the non-
commutative residue commute with differentiation on families of operators of constant order, a fact
that we will use to derive the multiplicative anomaly of determinants. Differentiable families of sym-
bols and operators are defined in the same way as were holomorphic families in Definitions 77 and 43
replacing holomorphic in the parameter z by differentiable in the parameter ¢.

Proposition 70 Let A; be a continuous, resp. differentiable family of C4(M, E) of constant order a.

1. The map t — res(Ay) is continuous, resp. differentiable. When differentiable, the residue com-
mutes with differentiation

d .
Eres(At) = res(Ay), (25.265)
where we have set A, = %At.

2. If the order a is non integer, the map t — TR(A;) is continuous,resp. differentiable. When
differentiable, the canonical trace commutes with differentiation

%TR(At) TR(A,). (25.266)

3. For any weight Q with order q and spectral cut «, the map t — TR(A;) is continuous,resp.
differentiable. When differentiable, the weighted trace commutes with differentiation:

d .
aTr (A;) = trQ(Ay). (25.267)

Proof: Using (2.11) we write the symbol o(A;) of A; as follows:

N—-1
o(Ae)(x,€) = > X(€) 0 (Ar) (2, €) + o () (Ar) (x,€).
7=0

165



1. By assumption, the map ¢t — tr(o_q(A¢)(x,-)) is continuous (resp. differentiable) leading to
a continuous (resp. differentiable) map ¢ — [q. ,, trs (0-4(A;)(z,-) ) after integration over the
compact set S*M with derivative: ¢ — fS;Ajtr (6-a(Ar)), where 64, = 04, stands for the
derivative of o4, at t. Thus, the map ¢ — res(4;) is continuous (resp. differentiable). When
differentiable, its derivative is given by (25.265).

2. By (??) and (??), in order to check the continuity (reps. differentiability) we need to check the
continuity (resp. differentiability) of the map ¢t — f;..,, tr (o(A¢)) (z,-). When differentiable, to

prove formula (25.266) we need to prove that

a tr(a(Am(x,-):fT tr (5(A) (2, ).

dt Jrenr M
The cut-off integral involves the whole symbol which we denote by oy := o(A;) in order to
simplify notations. Since the family o, has constant order, N can be chosen independently of
t in the asymptotic expansion. The corresponding cut-off integral can be computed explicitely
(see e.g [PS]):

{ o)t = /

*
x

N-1

tr (0o (26)) de+ 3 [ x©w (0., @.0) de

M

N—-1

_ Z a—jﬁ /5_1 tr ((Ut)afj (:v,w)) dsw.

j=0,a—j+n#0
The map ¢ +— [, tr ((Ut)(N) (z, 5)) d¢ is continuous (resp. differentiable) at any point ¢ since
by assumption the maps ¢ — tr ((ot)(N) (z, 5)) are continuous (resp. differentiable) with mod-

ulus bounded from above ‘tr ((dt)(N) (x,f))‘ < C|¢|Re@=N by an L' function provided N is
chosen large enough, where the constant C' can be chosen independently of ¢ in a compact neigh-
borhood of y. When differentiable, its derivative is given by ¢ — [ tr ((dt)(N) (3:,5)) de.

The remaining integrals f\g\gl x(&) tr ((O’t)a_j (:c,g)) d¢ and f\f\zl tr ((Ut)a—j (:zr,w)) dsw are
also continuous (resp. differentiable) as integrals over compact sets of integrands involving con-

tinuous (resp. differentiable) maps ¢ +— tr ((ot)(k ; (x,f)). When differentiable, their deriva-

tives are given by [, x(§) tr ((Ol-t)afj (:v,{)) d¢ and [, _, tr ((Ol-t)afj (:v,w)) dsw. Thus, t —
e ay tr(o(Ag) (2, €)) dE is continuous (resp. differentiable) with derivative given by f5.. ,, tr(6(A¢)(z, €)) dE.

3. By the defect formula (25.261) we have

1
THQ(4,) = / s (][T o)) /S o o8, @) ->>

which reduces the proof of the continuity (resp. differentiability) of ¢ — Tr?(4,) to that of the
two maps t = f.., tr(o(A;))(z,-) and t — [, tr(0-a(A; log, Q)) (2,8).
Continuity (resp. differentiability) of the first map was shown in the second item of the proof.
Let us first investigate the second map. By (18.193) we have
—5)led
¢ [e3 [e3
caltion, Q= Y 0 oo () 800 (g, Q).
|la|+a—j—k=—n
By assumption, the maps ¢t — o0,—;(A;) are continuous (resp. differentiable) so that ¢ —
S ps tr (0-a(A; log,, Q)) is continuous (resp. differentiable). When differentiable, its deriva-
tive reads

£ tr (6_a(A; log, Q) = / tr (a,d(At log,, Q)) .

SxM SxM
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Integrating over the compact manifold M then yields that the map ¢ — trQ(4;) is continuous
(resp. differentiable). When differentiable, its derivative is given by

/M dz <][T;Mtr(a(/1t)(a:, )) - % /S;Mtr (U(At log,, Q)(x, ))) = Tv9(A,).

25.4 An alternative characterisation of the noncommutative residue

In the previous paragraph, we saw that weighted traces are continuous in the Fréchet topology of
operators of constant order. The following result characterises continuous linear forms which vanish on
non integer order brackets of operators, in terms of weighted traces and the noncommutative residue.

Proposition 71 Any continuous 2° linear form on CU(M) which restricts to a trace*® on CEQZ(M),
is of the form
c- Trg + pres

for some complex constants ¢, and an admissible operator Q in CU(M,E) with positive order and
spectral cut o.

Proof: Let A be a continuous linear form on C¢‘M) which restricts to a trace on CS#(IRY). By
Corollary 12 applied to D(M) = C# (M), the restriction is proportional to the canonical trace TR:

Je € C, =cTR.

Iczéﬂ(M)

We want to describe all possible linear extensions A to classical operators with integer order.
Given an operator A € C/# (M) with integer order a, we build a holomorphic family A(z) = AQ,*
using a (-holomorphic regularisation scheme. Here « is a spectral cut for the operator @). In a small
neighborhood of zero

A(A(z)) = TR(AQ.).
The remaining degree of freedom left to define A(A) is the choice of a regularised evaluator at z = 0.
But by Proposition 2 (here k = 1), regularised evaluators at zero are of the form evy™® + v Resg, with
v a complex number. Hence,

A(A) = cevy®oTR(A(2)) + vReso (TR (A(z)))
cTrQ(A) + pres(A), (25.268)

with v = %. a

The existence of a weighted trace Tr% that does not vanish on brackets, i.e. that does not vanish
on brackets combined with Proposition 71 leads to an alternative characterisation of the noncommu-
tative residue similar to the one proved on the symbol level in Theorem (9).

Theorem 28 The two statements are equivalent:

1. Weighted traces Tr do not define traces on C4(M).

2. Any continuous trace A on CU(M) is proportional to the noncommutative residue

A=pres, pecC.

Proof: Assume there is an admissible operator in C¢(M) such that Tr” does not define a trace.

By Proposition 71, continuous traces on C¢(M), which by definition restrict to traces on C¢#% (M),
are linear combinations of the regularised trace Tr% and the noncommutative residue. But since Tr%
is not a trace, it follows that A is proportional to the noncommutative residue.

Conversely, suppose all continuous traces are proportional to the noncommutative residue; then by
Proposition 71, Tr® which is not proportional to the noncommutative residue, is not a trace. O

29For the topology of constant order operators
30Meaning by this that it vanishes on brackets in CZ#%(M).
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26 A local formula for the index in terms of a residue

We express the index of an operator in terms of the residue of its logarithm, thereby providing an a
priori local expression for the index since the residue is local. We then use Gilkey’s invariant theory to
derive the explicit local form of the index. A proof of the Riemann-Roch theorem using the expression
of the index as a residue of a logarithm was previously derived by S. Scott and D. Zagier in unpublished
work.

26.1 Zeta regularised versus heat-kernel regularised traces

When the weight @ has positive leading symbol o (Q), we can choose a = 7 as a spectral cut®' and
the Q-weighted trace Tr¥ relates with the heat-kernel regularised trace we are about to define. Let us
first recall some notations from paragraph 1.3.

For any real number b, Fg’k (resp. F"F) stands for the vector space generated by smooth functions
on |0, +oo[ with asymptotic behaviour at zero of the type

) ~o Zaa +Z Z lee a log e—i—ZZ”yﬂe] logl (26.269)

=0 J b =0 j=0
for some positive ¢ and some real numbers b, aj, 351,751, 7 € IN,1 = 0,--- , k (depending on f) (resp.
and such that for large enough e,
|f(e)] < Cem

for some A >0, C' > 0.)
We further set
f(lf = U fg’k;fk = U Fok,
beC beC
We quote the following result from [GS] in the classical case, [L1] in the log-polyhomogeneous case.
Proposition 72 Let A € C(**(M,E) and let A € CUM,E) be an elliptic operator with positive

order q and non negative leading symbol. The map € — tr (A efEA) which is defined for any e > 0,
lies in FTok+1 . More precisely, it has the following asymptotic behaviour as € — 0:

Tr (A eiéA ~es0 Z P;(loge) + Z ;€ (26.270)
7=0

where Pj is a polynomial of degree < k if J;"T*a ¢ Wy and < k+1if jf’;*a € INp.
We are now ready to introduce the following definition.

Definition 46 Let A € C(™*(M,E) and let A € CU(M,E) be an elliptic operator with positive
order q and non negative leading symbol. We call the cosntant term in the asymptotic expansion of
e»—»tr(A e’eA) as € — 0

T2 (A) i= evi® Tr (A e <2)
the heat-kernel reqularised trace of A.

Proposition 73 Let A € CU(M,E) and let A € CUM,E) be an elliptic (essentially) self-adjoint
operator with positive order and non negative leading symbol. Let wa be the orthogonal projection onto
the kernel of A. Then

TrA ™2 (A) = T2 (4) 4+ yres(A).

where v is the Euler constant.
In particular, if A is a differential operator we have:

TrAt™a (4) = TeK2(4),

31'We then drop the subscript 7 for simplicity.
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Proof: This follows from the results of Paragraph 1.3 where it was shown that the Mellin transform
of a function f € F°

1 o0
2= M(f)(z):= / e 1f(e) de
NE) =577 [ <0
defines a meromorphic map on the complex plane with poles of order < 1 at 0 and that
eV ZoM(f)(2) = evZy f(e) + 7 ResoM(f) (). (26.271)

We apply this to the function
fan(e) =Tr (A e_EA) =Tr (A (e—eA/ ® WA)) =Tr (A'e—éA/) + Tr (ma Ama)

where we have set A’ = (1 — ma) A (1 — 7a) using the fact that ma is a projector. Since (A’)™* =
M (e — e’eA/) (z), with A’ the restriction to the orthogonal of the kernel of the operator A, we infer
thet

M (fan)(z) = F(lz) /OOO & Tr (A e—fﬂ') de + Tr(ma A7a)
= TR (A ﬁ /000 e de) + +Tr(ma A7a)

= TR(A(A+7a)7%).

The second part of the statement then follows from the fact that differenital operators have vanishing
noncommutative residue. 0O

Example 43 The Laplace-Beltrami operator A on the unit circle equipped with the canonical Euclidean
metric has real spectrum {n?,n € Z}, each eigenvalue n?,n # 0 with multiplicity 2. It has finite
dimensional kernel Ker(A); let ma denote the orthogonal projection onto this kernel. Applying the
above results to A = A2 for any complex number a and Q = A + wa yields back the following

identity.
ev 5 <i a en) _ %GVES‘% (Tr ((A,)a/z e(a )1/2))
— %evi‘io (TR ((A/) 22+a)) _ 7 s ((A,)a/2)
= %evi‘fo (TR ((A/) 22+a)) 7 ros ((A,)a/Q)
= % VA ((A’)a/2) Y I‘GS((A/)G/Q)

When a # —1, we get back the formula relating cut-off and Riesz reqularised sums:

co,HK o0o,Riesz
—E n® = ev,s, g n®e " | =evi®, § n % =: —E n
n=1 n=1

26.2 The index as a superresidue

Weighted traces can be extended to weighted supertraces.
Let E = E. @ E_ be aZs-graded vector bundle over a closed manifold M and let Q4+ € C¢(M, E.),
Q- € CUM, E_) be two admissible operators with same the spectral cut 6. Setting Q := Q4 & Q_
we define the weighted supertrace of an even operator A = A* @ A~, with A" in C¢(M,E,), A_ in
CUM,E_)

str?(A) = tr(;Q+ (Ay) — tréQ’ (A),
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which clearly extends the ordinary supertrace Tr(A) = Tr(A;) — Tr(A_) on trace-class operators.
If D, : CUM,E;) — C{(M,E_) is an elliptic operator in C¢ (M, (E;)" ® E_) then its (formal)
adjoint D_ := D% : CU(M,E_) — C{(M,Ey) is an elliptic operator in C¢ (M,(E-)" ® E;) and
Ay :=D_D—+, A_:= D, D_ are non negative (formally) self-adjoint elliptic operators.

The following theorem which combines formulae due to McKean and Singer [MS] and to Atiyah and
Bott [?], expresses the index of D:

ind(DV) := dim (Ker(Dy)) — dim (Ker(D_))

in terms of the superweighted trace of the identity. On the grounds of (25.262) it then provides a local
formula for the index in terms of the noncommutative residue.

Theorem 29 The superresidue

sres (log(A + 7a)) := / (resy (log Ay +7a,)) —resy (log A_ +7a_))) da,
M

where as usual resy(B) = [o.\ tr(0_q(B)(x,§)) d& is well defined and we have

1
ind(Dy) = str®+7™a (1) = str (eiéA) = —gg5res (log(A +mwa)) Ve>0,
where A, T, , Ta_ are the orthogonal projections onto the kernel of A, Ay, A_ and d is the order
of D.
Proof: We first observe that

Spec(A) — {0} = Spec(A_) — {0},

Indeed,
A+U+ = AJFUJF = A_ (D7u+) = )\Jr l),uJr V’U,Jr S COO(M, E+)

so that an eigenvalue A of A, with eigenvector u is an eigenvalue of A_ with eigenvector D u,
provided the latter does not vanish. The converse holds similarly.

If we denote by {\},n € IN} the discrete set of eigenvalues of Ay and by {\,,n € IN} the discrete
set of eigenvalues of A_ it follows that for any € > 0

str (e_eA) = Z e~ — Z e~

ne IN ne N

= Z e~ — Z e~ +ind(Dy)
b #0 An #0

= ind(Dy).

Taking the limit as ¢ — 0 leads by Proposition 73 (which easily extends to supertraces) to str®(I) =
strf&A (1) = ind(D, ) since the noncommutative residue of the identity vanishes. Since the identity is
a differential operator, setting sTR,(I) := tr(/+) — TR, (I_) where I is the identity bundle map on
E. and I_ is the identity bundle map on E_ and

sres,; (log A) :=res, (log A}) —res, (log A_),

we have by (25.262) extended to super traces:
A+TmA 1
str (I = STR,(I) — —sres, (log(A +7a)) | dx
M \JT;M q

1
= ——/ sres, (log(A + 7a)) dx
q4Jm

1 sres (log(A + 7a)),
q

which is therefore well defined. O
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26.3 Geometric classical pseudodifferential operators

Let E = S®W be a twisted spinor bundle over an n-dimensional closed Riemannian manifold M with
auxillary bundle W equipped with a connection V" which we write d 4+ w in a local trivialisation.
Following Gilkey’s notations (see (1.8.17) in [?]), we introduce formal variables g;;/o = Jugi; for the
partial derivatives of the metric tensor g on M and the connection w on the external bundle. Let us
set

Ord(gij/a) = |al; Ord(wi/ﬁ) =Bl
The following property for operators underlies Gilkey’s proof of the Atiyah-Singer theorem [Gi].
Definition 47 We call a log-polyhomogeneous operator A € CL**(M, E) of order a geometric, if in
any local trivialisation, the homogeneous components o,—;(A) are homogeneous of order j in the jets
of the metric and of the connection.
In particular, a differential operator A =73, ., ca(z) Dy € CU(M, E) is geometric if co(x) is homo-
geneous of order j = a — |al in the jets of the metric and of the connection VWV

Example 44 The Laplace Beltrami operator

has this property.

Example 45 More generally, formula (2.4.22) in [Gi] shows that Ay = dp—10,-1 + Opd, on p-forms,
where 6, = (—1)"’“rl *n—k Ap—k—1%k+1, 1S a geometric operator. Indeed, each derivative applied to x
reduces the order of differentiation by 1 and increases the order in the jets of the metric by 1.

Example 46 Let Dn = > c(e;) B, be the twisted Dirac operator acting on C>° (M, S@W), where
we have set B =V ®1+1@ VW, Then

Dy = - Zgij <Ai RA;+ ZI‘Z I%) + Zc(dwi)c(dxj)[Ai, A
ij k

i<j

has this property, since locally we have W;u = O;u + I‘Z-juj + O;(u) with T';; the Christoffel symbols
which are homogeneous of degree 1 in the jets of the metric and ©; corresponding to the auxillary
connection.

Lemma 24 The derivative A'(0) at zero of a holomorphic germ A(z) € CU(M, E) of geometric oper-
ators is also geometric.

Proof: This follows from 8. (04(z)—;(A(2))) = (0(A'(2) gy O

Lemma 25 The product of two geometric operators A, B € CU(M, E) is again a geometric operator.

Proof: Since the product A B has symbol

al

o(AB)~ Y (=) 02 (A) %o (B),

we have

Tatv-k(AB) = Y (Z,) 0¢0q—i(A) g ay_;(B)
la+itj=k

where a is the order of A, b the order of B. Thus, if 0,—;(A) and o,_;(B) are homogeneous of degree i
and j respectively in the jets of the metric and the connection, o4yp—r(AB) is homogeneous of degree
i+j+|a=Fk O

The following theorem provides a way to build holomorphic germs of geometric operators.
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Theorem 30 Let Q € CU(M, E) be a geometric admissible (hence invertible elliptic) operator of pos-
itive order g with leading symbol o,(Q)(x, &) = |€]2.

Then for any geometric operator A in CU(M, E), the family A(z) := AQ? is a holomorphic germ at
z =0 of geometric operators.

In particular, A log @ is geometric.

Proof: By Lemma 25, it is sufficient to prove the result for A = I. Furthermore, since log@Q =
(aZQZ)\z:o’ by the Lemma 24, it suffices to show that Q% is geometric.

Since
1

Q=g [V @-NTan

we need to investigate the resolvent R(Q, \) = (Q —A)~!, the homogeneous components o,_;(R(Q, \))
of the symbol of which are defined inductively on j by

o f(RQN) = (04(Q) - N,
la|
o s(RQY) = o ®@QN) Y 0 Do,y (@Dio, (RQ 26272

ket |l =j,1<j

To start with, let us compute the first terms o_,—;(R(Q, \)) for j =0, 1,2, 3.

7—q(R(Q, %) = (|¢|" = M)~

o—q-1(R(Q, ) —(I¢]" = )7 [(04-1(Q)o—4(R(Q, A)) = iDeoy (@) Dao—o(R(Q, A))]
= =117 =N 0g-1(Q) -4 (R(Q. N)
—([€" =N 0g-1(Q),
o-q-2(R(Q,N) = —(lg* =N [Uq—( )o—q(R(Q; A) + 04-1(Q)0—¢-1(R(Q, A))
—iD¢0g-1(Q)Dzo—4(R(Q, N)) — iDgog(Q)Dyo—g—1(R(Q, N)) — iD0y(Q) D3o—4(R(Q, N))]
= —(lg*=A)" ' [Uq— (Q)o—q(R(Q, )‘))"’011 1(Q)o—g-1(R(Q, N)) — iDeog(Q)Dyo—q—1(R(Q, A))]
= (&= N2 0g-2(Q) + (€7 = N (04-1(@))* +i(|€]* = \)~* Deoa(Q) Duog1(Q),

0-q-3(R(@Q.N) = —(€l"=N7" [04-2(Q)0—¢-1(R(Q, X)) + 04-1(Q)o—¢—2(R(Q, N))
~iD¢0q-1(Q) Dy —g-1(R(Q; N)) = iDeog(Q) D20 —q-2(R(Q, A)) — iDEog(Q) D30 —q—1(R(Q, V)]
= (€7 =N 04-2(Q)og-1(Q)
+(lgl = N)7° e 1(@)og-2(Q) = (I€17 = N (04-1(Q))°
—i([€]" = X) T 04-1(Q) Dg0a(Q) Doog-1(Q) +i(l€]" = X) 7> Deog—1(Q) Duog-1(Q)
—i(|€]" = N)™* Deog(Q)Dx 04—2(Q) +i(|E* = N) " Deoyg(Q) Da (04-1(Q))°
—(1€]7 — )‘)_4 (Dfaq(Q))z Dgaq—l(Q) — (€7 — )‘)_3 D?%(Q)Diaq—l(@'

Using (26.272), one shows by induction on j that o_,_;(R(Q, \)) is a finite sum of expressions of the
type

(=) (€)? =N DE DY g1, (Q) - DD og-1, (Q), il +lal =4, |l =1].

Inserting this in
1

qufj(Q )(.I g) 2Z

| Vo (RQ ) (@, 6) (26.273)
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and applying repeated integrations by parts to compute the Cauchy integrals — ﬁ fr N (€] —N)~k—1

o [ty =~ 2E e e -
i e e R (G
- _(—1)’“z(z+1)]~€!..(z+(k—1))%/FAZk(mq_A)1dA
— (1)t 2(z41)-- k(j+ (k—1)) [,

shows that 04,—;(Q%)(z, &) is a linear combination of symbols of the type

€1 D D o1, (Q)(@,€) -+ DD 01, (Q)(,€), [l +al =3, lal=15].

Since o4—;(Q) is homogeneous of order [/ in the jets of the metric and the connection, it follows that
for any complex number z, the symbol og.—;(Q?) is homogeneous of order j in the jets of the metric
and the connection. 0O

26.4 The noncommutative residue density as a form valued invariant poly-
nomial

Let us as in Section 1 consider a twisted spinor bundle F = S ® W over an n-dimensional closed
Riemannian manifold M with auxillary bundle W equipped with a connection V.

Adopting Gilkey’s notations [Gi] par. 2.4, let us denote by PZ:Z;V with V"' the connection on the
auxillary bundle W, which we write 737917 kp if £ = 5, the linear space consisting of p- form valued

t32

invariant3? polynomials that are homogeneous of order & in the jets of the metric®® and of the connection

vW.

Example 47 The scalar curvature vy belongs to 7351270 since it reads:
2 2
M =2 E (ai,jgij - 3i,igjj)
4]

in a normalised coordinate system.

Theorem 31 Let A(z) € CU(M, E) be a holomorphic germ at 0 of geometric operators with order
a(z) such that o/(0) # 0.

1. If A(0) is a differential operator, the noncommutative residue density res,(A’(0))dx lies in
9. v"

Pn,a(0)+n,n'
tensors.

It is spanned by expressions of order n in the covariant derivatives of the curvature

2. If moreover A(0) is a multiplication operator, then the residue density res,(A’(0)) dx is generated
by Pontryjagin forms of the tangent bundle and by the Chern forms of W.

Remark 49 1. The assumption that A(0) be a multiplication operator follows from combining the
fact that it is a differential operator and that it has order 0.

2. If there is no dependence in VW, then res,(A’(0))dx is generated by Pontryjagin forms of the
tangent bundle.

Proof:

32By invariant we mean that they agree in any coordinate system around zp which is normalised w.r. to the point zq,
i.e. such that g;;(xo) = d;; and Jxgs;(x0) = 0.
33The order in the jets of the metric is defined by ord(02g;;) = |a.
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1. By Lemma 24, the derivative A’(0) is a geometric operator. In particular, since A’(0) is like
A(0), of order «(0), the homogeneous component o_,, (A’(0)) is homogeneous of order a(0) + n
in the jets of the metric and the connection. On the other hand, by Theorem ?7, if A(0) is

'P.(];VW

a differential operator, res, (A’(0))_,, dx defines a global density so that it lies in P/ (0)+nm

w
By Weyl’s description of a spanning set for ’PZ’Z(O)JFH ., (see [Gi] Lemma 2.4.4), we know that
res, (A’(0))_,, dx is spanned by expressions of order n in the covariant derivatives of the curvature

tensors.

2. The second part of the statement then follows from Theorem 2.6.2 in [Gi] which says that when
the degree of the form coincides with the degree of homogeneity, then only two jets of the
metric and connection come into play (so only curvatures not their covariant derivatives), an
observation which also played a role in Atiyah, Bott and Patodi’s proof. More precisely, the
direct sum @ﬂ’ﬂ;Z ZV)V is generated by Pontryjagin forms of the tangent bundle and by the Chern
forms of W. If there is no dependence in VW, then @,PJ is generated by Pontryjagin forms

n,p,p
of the tangent bundle.

O
Combining Theorem 30 with Theorem 31 applied to A(z) = A Q*, immediately leads to the following
result.

Corollary 18 Let Q € CU(M, E) be a geometric admissible (and hence invertible elliptic) classical
pseudodifferential operator of positive order with leading symbol o4(Q)(x, &) = |£|?.

1. For any geometric differential operator A € CU(M, E) of order a, the residue density res, (A log@Q)_, dx

w
lies in Py ginn-

2. If moreover A is a multiplication operator then then the residue density res, (A log Q) dx is gen-
erated by Pontryjagin forms of the tangent bundle and by the Chern forms of W.
In particular, res, (log Q) _,, dx is generated by Pontryjagin forms of the tangent bundle and by
the Chern forms of W.

Example 48 With the notations of the first section, we have that res, (log(Ag + WAQ))_n dx lies in
P pn and res; (log(D%A + tzA)) dz lies in POV .

n n,n,n

It follows from (??) that the index ind(D w) is the integral over M of a form valued invariant polynomial

. w
n 'P,-‘{:Xn .

26.5 The Atiyah-Singer index theorem revisited

As in the previous sections, ' = S ® W is a twisted spinor bundle over an n-dimensional closed Rie-
mannian manifold M with auxillary bundle W equipped with a connection V"

Let us state a few functorial properties of the residue density.

Let Eq and E3 be two vector bundles over the same manifold M, and A;(z) € C¢(M, E;) two holo-
morphic germs at z = 0 with holomorphic order «;(z) such that A;(0) is a differential operator of
order a = a1(0) = a2(0) and a4(0) # 0. Then A;(z) ® Aaz(z) is a holomorphic germ at z = 0 with
holomorphic order a;(z) as(z) and we have (A; ® As)" (0) = A} (0) @ AL(0) so that

Ta—j ((A1 @ A2)' (0)) = 04—;(A1(0)) + 74— (A45(0)).
It follows that for any point z € M
res, ((4; ® Ay) (0)) = res, (A1(0)) + res, (45(0)). (26.274)

If now M = M; x My and F = E; X E5, where E; is a vector bundle over M; and if A;(z) €
CUl(M;, E;),i = 1,2 are two holomorphic germs at 0,with holomorphic order a;(z) such that A;(0) is a
differential operator of order a = a1(0) = a2(0) and }(0) # 0. Then A;(z) ¥ A2(z) is a holomorphic
germ at 0 and

0 (log((A1 B A2)'(0))) = D 0a—p(A1(0)) 7u—q(A5(0)).

p+q=j
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When a = 0 it follows that

o (log((A1 B A (0))) = 30— (44(0)) 0g(45(0): (26.275)

ptg=n

From Theorem 31 combined with the functorial properties of the residue densities, we infer the following
statement.

Theorem 32 Let A(z) € CU(M, E) be a holomorphic germ at 0 of geometric operators with order
a(z) such that A(0) is a multiplication operator and o' (0) # 0.
There exist Pontryjagin forms a; € P2;(O(IR™)) of form degree 45 and functions C; y(x) such that

sres; (A'(0)) dz = Z Cjn(x) aj(g9)(z) Astry (chp(VV)(2)),
4j+2k=n

where stry, stands for the supertrace on the fibre E, above v € M.

Proof: We borrow arguments used by Gilkey [Gi] in his proof of the Atiyah-Singer index theorem.
By Theorem 31 combined with the multiplicative property (26.275), there exist Pontryjagin forms
a; € P2;(O(IR™)) of degree 4j, Chern forms 3; € Pa;(gl(W)) of degree 2k and functions C, ,(z) such

that
sres,(A'(0))dz = > Cpqlx) aplg)() Astre (B,(VY)(2)) .
4Ap+2q=n

The additivity property (26.274) then imposes 34 (V") to be proportional to chy (V") since the Chern
character of degree k is the only characteristic 2k-form which is additive w.r. to sums. O

Applying this to a holomorphic germ A(z) = A Q* leads to the folllowing statement.

Corollary 19 Let Q € CU(M, E) be a geometric admissible (and hence invertible elliptic) classical
pseudodifferential operator of positive order with leading symbol o4(Q)(x, &) = |£|?.

For any multiplication operator A € CU(M, E), there exist Pontryjagin forms a; € Pa;(O(IR™)) of
form degree 45 and functions C; i (z) such that

sres; (A log Q) dx = Z Cjx(x) aj(g)(z) Astry (chy(VV)(2)) .
4j+2k=n

Applying this to Q := D?4mp2 and replacing residues by super residues leads to the following corollary.

Corollary 20 Given any superconnection V and the corresponding twisted Dirac operator Dy, there
exist Pontryjagin forms o € Pa;(O(IR™)) of form degree 45 and functions C; () such that

sres, (log(D? + 7p2)) do = Z Cju(x) aj(g)(z) Astry (chy(VV)(2)),
4j+2k=n

and hence
(D)= =5 > [ Ciue) as()a) Astr, (e (V) (@)).

4j+2k=n
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27 Multiplicative anomaly of regularised determinants

We describe two types of regularised determinants, weighted determinants and the (-determinant,
which relate by a local formula. Weighted and (-determinants are not multiplicative but, as it is well-
known since the work of Okikiolu on the one hand and Kontsevich and Vishik on the other hand, the
corresponding multiplicative anomaly which measures the obstruction to the multiplicativity is local
in a sense we make precise. This chapter is based on [OP].

27.1 Weighted and zeta determinants

An admissible operator A € CY¢(M, E) with spectral cut 6 and positive order has well defined Q-
weighted determinant [D] (see also [FrG]) where Q € C4(M, E) is a weight with spectral cut a:

Det@(A) := Trd (logg 4)

Since the weighted traces restrict to the ordinary trace on trace-class operators, this determinant
extends the ordinary determinant on operators in the determinant class.

The weighted determinant, as well as being dependent on the choice of spectral cut 6, also depends on
the choice of spectral cut a.

Proposition 74 Let 0 < 0 < ¢ < 2w be two spectral cuts for the admissible operator A. If there is a
cone Mg o (see 22.223) which does not intersect the spectrum of the leading symbol of A then

Detg’ (A) = DetZ (A).

Proof: Under the assumptions of the proposition,the cone Ay g defined as in Proposition 61, contains
only a finite number of points in the spectrum of A so that log, A —logy A = 2i7lly 4(A) is a finite
rank operator and hence smoothing. Hence,

Q
Det¢7 (A) eTrQ (log¢ A—logg A) _ eTrQ (2im g, 4 (A))
Det$ (A)

e2i7‘rtr(Hgﬁ¢(A)) — 2 rk(Ilp ¢ (A))

where rk stands for the rank. O

An admissible operator A € Cl(M, E) with spectral cut 6 and positive order has well defined
¢-determinant:
Det¢ Q(A) = e_<:4,9(0) _ etrg‘(loge A)

since (a,9(2) := TR(A,?) is holomorphic at z = 0. In the second equality, the weighted trace has
been extended to logarithms as before, picking out the constant term of the meromorphic map z +—
TR(logy AQ 7).

Recall from formula (25.264) that

log Det¢ o(A) :/

1
da {TRI (logg A) — —res, (logs A) (27.276)
M 2a

where a is the order of A and where res, is the noncommutative residue density extended to log-
polyhomogeneous operators defined previously. This expression corresponds to minus the coefficient
in z of the Laurent expansion of TR(A™%).

The (-determinant generally depends on the choice of spectral cut. However, it is invariant under
mild changes of spectral cut in the following sense.
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Proposition 75 Let 0 < 0 < ¢ < 27 be two spectral cuts for the admissible operator A. If there is a
cone Mg o (see 22.228) which does not intersect the spectrum of the leading symbol of A then

Detgyg(A) = Det<7¢(A).

Proof: By (27.276), and since log, A — logy A = 2inlly 4(A) is a finite rank operator and hence
smoothing under the assumptions of the proposition, we have

M — oJude [TR. (log,, A)— sk res, (log? A)|— [, dx [TR, (logg A)— s res, (logi A)]
Detg_’g(A)
eJar 4z [TRo (logy, A~logy A)— 5 res, (logd A~logj A)]

_ efM dx [TRZ (2im Mg 4 (A))— 5= resg ((log¢ A+logy A) 2im Hg@(A))]

621'71' tr(Ilg 4 (A))— 221: rcs((logd) A+logy A)Ilg 4 (A))

— e2i7‘r rk(Hgyd)(A))

= ]_7

where we have used the fact that the noncommutative residue vanishes on smoothing operators on
which the canonical trace coincides with the usual trace on smoothing operators. 0O

27.2 Multiplicative anomaly of weighted determinants

Unlike ordinary matrix determinants, weighted determinants are not multiplicative. The multiplicative
anomaly for Q-weighted determinants of two admissible operators A, B with spectral cuts 6, ¢ such
that AB has spectral cut 1 is defined by:

Det%? (AB)
Q - ¥
M97¢71/J(A’B) T Q Q ’
Detg (A) Det (B)

which we write M%(A, B) to simplify notations.

Proposition 76 Let A and B be two admissible operators with spectral cuts 8 and ¢ in [0,27] such
that there is a cone delimited by the rays Lo and Ly which does not intersect the spectra of the leading
symbols of A, B and AB. Then the product AB is admissible with a spectral cut 1 inside that cone
and for any weight Q with spectral cut, dropping the explicit mention of the spectral cuts we have:

log M@ (A, B) = /0 s (W(T)(A,B) (1(’5%: f ) _ 1°gan>) dr. (27.277)

Weighted determinants are multiplicative on commuting operators.

Proof: Since the leading symbol of the product AB has spectrum which does not intersect the cone
delimited by Lg and L, the operator AB only has a finite number of eigenvalues inside that cone. We
can therefore choose a ray 1 which avoids both the spectrum of the leading symbol of AB and the
eigenvalues of AB in which case the weighted determinants DetéQ(A), Detg(B) and Deti2 (AB) do not
depend on the choices of spectral cuts satisfying the requirements of the proposition.

Since
log M@(A, B) = log Det?(AB) — log Det®?(A) — log Det®?(B) = Tr?(L(A4, B)),

the logarithm of the multiplicative anomaly for weighted determinants is a local quantity (24.248)
derived in Theorem 25.
To prove the second part of the statement we observe that

[A,B] = 0= L(A, B) = 0. (27.278)

177



Indeed, let T be a contour as in formula (25.267) along a spectral ray around the spectrum of A’ B
for some fixed tg, then

d i d
—  log(A'B) = — [logA—  (A'B—)\)""dA
. toeas) = o [oaa g )
- 2L/1ogA(AfOB—A)—1 log AA™B (A" B — \)~td\
T Jr
- 1ogAAt032i/1ogA(At°B—A)*2dA since [A, B] =0
T Jr
= —logAAt“B2L//\71(At“B—)\)71 d\ by integration by parts
T Jr
= —logA AB(A"B)™!
—log A.
Similarly, we have %‘ log(AY) = —logA so that ﬁnally %‘ L(AY,B) = %I log(A'B) —
t=tq t=tq t=tg
%It N log(A") vanishes. It follows that L(A, B) fo T |1 At B)dr = 0.

Since L(A, B) vanishes when A and B commute, welghted determinants are multiplicative on com-
muting operators. 0O

27.3 The multiplicative anomaly of the zeta determinant

The (-determinant is not multiplicative 4. Indeed, let A and B be two admissible operators with

positive order and spectral cuts 6 and ¢ and such that AB is also admissible with spectral cut 9. The
multiplicative anomaly

Det¢ 4 (AB)
DetC g(A) Det<7¢(B) ’
was proved to be local, independently by Okikiolu [O2] for operators with scalar leading symbol and
by Kontsevich and Vishik [KV] for operators “close to identity”.
For simplicity, we drop the explicit mention of 8, ¢, and write M. (A4, B).

MEPY(A,B) =

By Proposition 65, the operators L(A, B) IOgA —K(A,B) and L(A, B) &8
operators of zero order with K (A, B) := 1ogw AB - 1 logg A-— % logi B

K (A, B) are classical
3(ath) +b)

The following theorem provides a local formula for the multiplicative anomaly independently of
Okikiolu’s assumption that the leading symbols be scalar.

Theorem 33 Let A and B be two admissible operators in CU(M,E) with positive orders a,b and
with spectral cuts 6 and ¢ in [0,27[ such that there is a cone delimited by the rays Lg and Ly which
does not intersect the spectra of the leading symbols of A, B and AB. Then the product AB is ad-
missible with a spectral cut v inside that cone and the multiplicative anomaly M?‘i”w(A, B) is local as
a noncommutative residue, independently of the choices of 0, ¢, and ¥ satisfying the above requirements.
Ezplicitly, and dropping the explicit mention of the spectral cuts, there is a classical operator W (7)(A, B)
given by (24.247) of order zero depending continuously on T such that:

log M¢ (A, B)
i /Olres (W(T)(A,B) (1055{15) - loiB>> dr

b ores L(A,B)log B log?AB  log’A  log’B
b 2(a+b) | 2a 2%
1 T
= / res (W(T)(A,B) (10g(A B) _ 10gA>> dr
0 at +b a
L(A,B)logA log?AB log’A log’B
— 27.2
+ res( a 2a+b) 20 2 (27.279)

341t was shown in [LP] that all multiplicative determinants on elliptic operators can be built from two basic types of
determinants; they do not include the (-determinant.
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When A and B commute the multiplicative anomaly reduces to:

logM¢(A,B) = —res (m log?(AB) — % log? A — %log2 B)
B ab logA logB 2
= 3t res [( — - ) (27.280)

Remark 50 For commuting operators, (27.280) gives back the results of Wodzicki as well as formula
(II1.3) in [D]:
res (log”(A*B~%))

log Mc(4, B) = 2ab(a + b)

Proof: As in the proof of the locality of the multiplicative anomaly for weighted determinants (see
Proposition 76), the independence of the choice of spectral cuts satisfying the requirements of the
theorem follows from Lemma 77.

Combining equations (27.276), the defect formula (25.261) applied to the operator L(A, B) and weight
B with equation (24.248) applied to @ = B we write:

log M (A, B)
= logDet¢(AB) — logDet¢(A) — log Det¢(B)

_ / da [TR.(L(A, B))
M

1 2 1 2 1 2
( res; (log” AB) 26Lresm(log A) 2bresgg(log B))}

2(a+0)
= tr®(L(A, B)) +/ dx [% res, (L(A, B) log B)
M
- ! res (log2 AB) - ires (log® A) — ires (log® B) (27.281)
2(a+b) " 20 20 '
! log(A™B) logB
= /0 res (W(T)(A,B) ( ey )>d7'
n L(A,B) logB log? AB  log?A log?B
res b 2a+b) | 2a % )’

which proves the first equality in (27.279). The second one can be derived similarly exchanging the
roles of A and B.
When A and B commute, by (27.278), the operator L(A, B) vanishes so that (27.281) reduces to:

log M¢(A,B) = trB(L(A,B))+/

dx [1 res, (L(A, B) log B)
M b

1 2 1 2 1 2
(2(a ) res, (log” A B) 5 18z (log= A) op sz (log B))]
o log? AB  log?A log?’B
= —T — —
2(a+b) 2a 20
_ ab ros logA  logB 2
T 2(a+0b) a b

179



28 Conformal anomaly of the (-determinant

Conformal anomalies arise naturally in quantum field theory. A conformally invariant classical action
A(g) in a background metric g, for example the string theory (described previously by the classical
action A(X,g)) or nonlinear sigma model action, does not usually lead to a conformally invariant
effective action W(g), since the quantization procedure breaks the conformal invariance and hence
gives rise to a conformal anomaly. In particular, in string theory the conformal invariance persists
after quantization only in specific critical dimensions. This chapter is based on [PayR2].

28.1 Conformally covariant operators

We view the Laplace-Beltrami operator A, associated with a Riemannian metric g as an example of a
more general class of conformally covariant operators.
Given a vector bundle E over a closed manifold M, le us consider maps

Met(M) — CI(M,E)
g — Ay,

where Met (M) denotes the space of Riemannian metrics on M.

Definition 48 The operator A, € CI(M,E) associated to a Riemannian metric g is conformally
covariant of bidegree (a,b) if the pointwise scaling of the metric g = €%/ g, for f € C®(M, IR) yields

Ay = e b A et = ela=b)f Ay, for A = e A et (28.282)
for constants a,b € RR.

We survey known conformally covariant differential and pseudodifferntial operators; more details
are in Chang [Ch].
Operators of order 1. (Hitchin [Hi]) For M" spin, the Dirac operator D, := ~*- V¥ is a conformally

covariant operator of bidegree ("T_l, "T“)

Operators of order 2. If dim(M) = 2, the Laplace-Beltrami operator A, is conformally covariant
of bidegree (0,2). Tt is well known that in dimension two

Ry =e 2/ (R, +2A,1), (28.283)

where R, is the scalar curvature, and by the Gauss-Bonnet theorem see e.g. [R])
/ R, dvol, = 2mx (M), (28.284)
M

with the Euler characteristic x(M) (much more than) a conformal invariant.
On a Riemannian manifold of dimension n, the Yamabe operator, also called the conformal Lapla-
cian,
Lg:=Ay+cp Ry,
n—2
In=10)"
Operators of order 4. (Paneitz [Pan, BO]) In dimension n, the Paneitz operators

is a conformally covariant operator of bidegree ("7_2, "T”), where ¢, :=

P} =P+ (n—4)Qy

are conformally covariant scalar operators of bidegree (252, 244). Here p; = AZ+d* ((n—2) Jyg—4A4) d

2 02
with "
R Ric, —=2¢g J,
J =——9 A =79 nJ 79
7 2n—-1)""1 n—2 o n¥

nJZ—4|Ag* 4244 J,

A, the homomorphism on T*M given by ¢ = (¢;) — (Ag)g ¢;, and Q := is Bran-
son’s Q-curvature [B1], a local scalar invariant that is a polynomial in the coefficients of the metric
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tensor and its inverse, the scalar curvature and the Christoffel symbols. Note that A, = %Jq g precisely
when ¢ is Einstein.

The @Q-curvature generalizes the scalar curvature R, in the following sense. On a 4-manifold, we
have )
Q3= (Qh+ 57

(.cf. (2[23]283)), and [,, Qadvol, is a conformal invariant (cf. (28.284)), as is [,, Q7dvol, in even dimen-

sions [?].

Operators of order 2k. (Graham, Jenne, Mason and Sparling [GJMS]) Fix k& € Z* and assume

either n is odd or k < n. There are conformally covariant (self-adjoint) scalar differential operators
1 Of bidegree (" 22’“, "+2k) such that the leading part of P, is Ak and such that P = Ak on IR"

w1th the Euclidean metric.

P} generalizes P, since P’ = P75, and satisfies

~ n—=2k _,
k= Py + 9 Qg

where P; d*Sgd for a natural differential operator S7 on 1-forms.

Note that P?, has bidegree (a,b) with b — a = 2k independent of the dimension and in particular
has bidegree (0, 2k) in dimension 2k.
Pseudodlfferentlal Operators. (Branson and Gover [BG]|, Petersen [?]) Peterson has constructed
ydos , Pk € C, of order 2Re(k) and bidegree ((n — 2k)/2, (n + 2k)/2) on manifolds of dimension

n > 3 with the property that P, — e bt Ple @/ is a smoothing operator. Thus any conformal covariant
built from the total symbol of P"k is a conformal covariant of P, itself. The family P, contains
the previously discovered conformally covariant pseudodifferential operators associated to conformal
boundary value problems [?].

28.2 Conformal anomalies

Let M be a closed Riemannian manifold and Met(M) denote the space of Riemannian metrics on
M. Met(M) is trivially a Fréchet manifold as the open cone of positive definite symmetric (covariant)
two-tensors inside the Fréchet space

C®(T*M @, T*M) := {h € C®°(T*M @ T*M) : hap = hpa}

of all smooth symmetric two-tensors. The Weyl group W (M) := {e/ : f € C°°(M)} acts smoothly on
Met(M) by Weyl transformations

Wi(g, f)=g:=eg,

and given a reference metric g € Met(M), a functional F : Met(M) — C induces a map

Fg=FoW(g,):C*(M) — C,
f - f(ezfg).

Definition 49 A functional F on Met(M) is conformally invariant for a reference metric g if Fy is
constant on a conformal class, i.e.

F(eg) = Flg) VfeC=(M).

A functional F on Met(M) is conformally invariant if it is conformally invariant for all reference
metrics. A functional F : Met(M) x M — C is called a pointwise conformal covariant of weight w if

F(g.0) = w- [(2)Flg,) VS €C=(M), VaeM.
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A functional F : Met(M) — C which is Fréchet differentiable has a differential
dF(g) : T,Met(M) = C=(T*M @, T*M) — C,

_d| Flg+th)-F(g)
T dt li=o t '

For such an F, the differentiability of the Weyl map implies that the composition F, : C*°(M) — C
is differentiable at 0 with differential dF,(0) : ToC>(M) = C>(M) — C.

dF(g).h

Definition 50 The conformal anomaly for the reference metric g of a differentiable functional F on
Met(M) is dF4(0). In physics notation, the conformal anomaly in the direction f € C*° (M) is

6pFy = dFy(0).f =dF(g9)2fg

Remark 51 F is conformally invariant if and only if dF4(0).f =0 for all g € Met(M), f € C(M).

For a fixed Riemannian metric g = (gq5), we equip C°°(M) with the L? metric
(0o = [ 1@ e)vol ),
We define an L? metric on Met(M) by

(h,k)g := /M 9°(2) 9" () hap () kea(x) dvoly(z) = /M he(x) keq(x) dvoly(z) (28.285)

with (g%°) = (gap) ™! and h®(x) := g°°(2)g*(z) heq(z). The L? metric induces a weak L2-topology
on Met(M), and L*(T*M @4 T*M), the L*-closure of C>(T*M ®, T*M) with respect to ( , )4, is
independent of the choice of g up to Hilbert space isomorphism. The choice of a reference metric yields
the inner product (28.285) on the tangent space T,Met(M) = C°(T*M ®, T*M), giving the weak L?
Riemannian metric on Met(M ), and forming the completion of each tangent space.

The various inner products are related as follows:

Lemma 26 For g € Met(M),h € C®(T*M @5 T*M) and f € C®(M), we have
(h, £ 9) = (try(h). 1),
where we have set: try(h) := hl = g®hgy,.
Proof: We have
(. f9)g = y (@) g°*(2)9" (2) hap (@) gea() dvoly(z)

=/, f(@) 9° () hap () dvoly(z)
= (trg(R), f),- O

O

Definition 51 If the differential dF(g) : C®°(T*M @, T*M) — C extends to a continuous functional
dF(g) : L*(T*M @5 T*M) — C, then by Riesz’s lemma there is a unique two-tensor T,(F) with

dF(g).h = (h,Ty(F))y, VheL*(T*M @4,T*M).

T,(F) is precisely the L* gradient of F at g.
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Proposition 77 Let F be a functional on Met(M) which is differentiable at the metric g and whose
differential dF(g) extends to a continuous functional dF(g) : L*(T*M @, T*M) — C. Then the
differential dF,(0) also extends to a continuous functional dF,(0) : L*(M) — C. Identifying the
conformal anomaly at g with a function in L?(M), we have

dF4(0) = 2try (Ty(F)) -
In particular, the functional F is conformally invariant iff try (T4(F)) = 0 for all metrics g.

Proof: The differential d(F,)o extends to a continuous functional because

dF,(0).f = dF(9)(2f g) = dFy(0).f = dF(9)-2f g

By Lemma 26,

dF4(0).f = dF(g9).2f g = (Tg(F),2f g)g =2 (trg(Tq(f))af)ga
as desired. O

Definition 52 Under the assumptions of the Proposition, the function
T 0. Fg i= 2trg (Tg(F)) (2)
is called the local anomaly of the functional F at the reference metric g.

Example 49 This example is taken from bosonic string theory. Let (M,g) be a closed Riemannian
surface and X : M — R? a smooth map. Let

1
A, = ————0;\/detgg;;0;
g Vdetg 9943

(where as before detg stands for the determinant of the metric matriz (gi;) and (g%) its inverse)
denote the Laplace-Beltrami operator on M. The classical Polyakov action [Po] (see also [AJPS] and
references therein for a review) for bosonic string

A(Xa g) = <Ag X7X>g
yields a conformal invariant (depending on X ) since
A(Xa e2f g) = <Ae2ngaX>e2fg
= (e Ay X, X) 1,
= (AgX, X>g'

For any h € C=(M,T*M ®, T*M), since d\/detg.h = §+/detgg¥h;; = §+/detgtr?(h) and since
dg~t.h=—gthg=! we have

dA(X,)(g)-h = d</ XH 0, detggij[)jX“> h
M

% (/M X+, \/Mtrg(h)gijanu> - /M 0iv/detg g hiag*'0; X" X"
— _%/M @trg(h)gijaiXﬂan“"‘/M Vdetg g hy gt 9, X" 9; X"
= =5 | Vg, (e, 070, X7) [ derghi o0 0,7

_ —%<trg(8iX#8jX“), trg(h))g + (R, 8; X" 9;X"),

= —(%trg(&X“an“) g+ 0 X" 9; X", h)y

= (h,Ty())g

so that with the above notations we have dA(X,-)(g) = T, where T, is the two covariant tensor
Ty = 0; X" 0; X" — Ltry(0; X190, X") g called the energy-momentum tensor. Note that trg(Ty) =0 as
expected since A(X,-) is conformally invariant.
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28.3 Conformal anomaly

From a path integral point of view, the conformal anomaly of the quantized action is often said to
arise from a lack of conformal invariance of the formal measure on the configuration space of the QFT.
Whatever this means, we can detect the source of the conformal anomaly in the quantization procedure.
In order to formally reduce the path integral to a Gaussian integral, one writes the classical action as a
quadratic expression A(g)(¢) = (A4, @), where ¢ is a field, typically a tensor on M, A, a differential
operator on tensors and (-,-), the inner product induced by ¢g. Because this inner product is not
conformally invariant, the conformal invariance of A(g) usually translates to a conformal covariance
of the operator A;. Thus this first step, which turns a conformally invariant quantity (the classical
action) to a conformally covariant operator, already breaks the conformal invariance.

The second step in the computation of the path integral uses an Ansatz to give a meaning to the formal
determinants that arise from the Gaussian integration. Mimicking finite dimensional computations,
the effective action derived from a formal integration over the configuration space C is

e 2V .= /6_%“4(9)(‘1’) Do = “det” (Ag)_%.
c

If there were a well defined determinant “det” on differential operators with the usual properties, (?7)
would yield for a conformally covariant operator of bidegree (a, b)

“det”(Apary) = “det”(e " Aget)
“det” (e 7) “det” (Ay) “det” (e” )
= “det”(el*7) ) “det” (4,),
where e¢/ is treated as a multiplication operator for ¢ € IR. Hence, even if a “good” determinant
exists, the effective action W(g) would still suffer a conformal anomaly, since A, is only conformally

covariant:

5W(g) = 85 log “det” (A,) = 07 log “det” (e 7F) = (a — b) “tr”(f),

where “tr” is a hypothetical trace associated to “det”.

The (-determinant Det; on operators is used by both physicists and mathematicans as an Ersatz
for the usual determinant on matrices. The following well-known result shows that the above heuristic
derivation holds replacing the trace tr on matrices by a weighted trace tr4s.

Theorem 34 [BOJ, [?], [7] Let A, € CU(M, E) be a conformally covariant admisible elliptic operator
with positive order o independent of g. Then the conformal anomaly of the (-determinant of Ay is a
local expression given by:

8¢ log Det¢(Ay) = (a — b) trie (f) = —éres (f log Ay) .

Remark 52 The regularisation procedures involved in the (-determinant and the finite part of the
heat-operator expansion are not responsible for the conformal anomaly of the effective action W(g);
the conformal anomaly appears as soon as one uses the conformally covariant operator Ay associated
to the originally conformally invariant action A(g). This conformal anomaly therefore has nothing to
do with the multiplicative anomaly investigated in the previous section.

Proof: We use Proposition ?? combined with the fact that §;A, := (a — b) f A4 to write

d
5f log Detgﬂg(Ag) = <E log Detgyg(Aeztfg))

d
Ag [ g1
tr (Ag p A82tfg) |
t=0

(a —b) trAg(f).

[t=0

Since the multiplication operator by f is a differential operator, we can write trs (f) = — éres (log Ay) .
O
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Remark 53 In [?], we use the Kontsevich-Vishik canonical trace to produce a series of conformal
spectral invariants (or covariants or anomalies) associated to conformally covariant pseudodifferential
operators. Although only one covariant is mew, the use of canonical traces provides a systematic
treatment of these covariants.

Example 50 One can show that for the conformal anomaly of the (-determinant of the conformally
covariant operator Ay on a Riemann surface (M, g) reads:

5 (Dete(Ag)) = ﬁ ((fs Agf)g +2(Ry, f)g)

where as before Ry is the scalar curvature. It contributes to the conformal anomaly of the partition
function for bosonic strings [AJPS].
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