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i Yy ;E Abstract
, ErNim The goal of these lectures is to present the few fundamentals of non-

commutative geometry looking around its spectral approach. Strongly
motivated by physics, in particular by relativity and quantum mechan-
ics, Chamseddine and Connes have defined an action based on spectral

i considerations, the so-called spectral action.

%; = The idea is to review the necessary tools which are behind this spectral
g 5 é action to be able to compute it first in the case of Riemannian manifolds
&E E (Einstein—Hilbert action). Then, all primary objects defined for mani-
ga < folds will be generalized to reach the level of noncommutative geometry
Z> % via spectral triples, with the concrete analysis of the noncommutative
aijf torus which is a deformation of the ordinary one.

The basics of different ingredients will be presented and studied like,
Dirac operators, heat equation asymptotics, zeta functions and then,
how to get within the framework of operators on Hilbert spaces, the no-
tion of noncommutative residue, Dixmier trace, pseudodifferential oper-
ators etc. These notions are appropriate in noncommutative geometry
to tackle the case where the space is swapped with an algebra like for
instance the noncommutative torus. Its non-compact generalization,
namely the Moyal plane, is also investigated.
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Motivations:

Let us first expose few motivations from physics to study noncommutative geometry which
is by essence a spectral geometry. Of course, precise mathematical definitions and results
will be given in the other sections.

The notion of spectrum is quite important in physics, for instance in classical mechanics,
the Fourier spectrum is essential to understand vibrations or the light spectrum in electro-
magnetism. The notion of spectral theory is also important in functional analysis, where the
spectral theorem tells us that any selfadjoint operator A can be seen as an integral over its
spectral measure A = [, cq ) a dP if Sp(A) is the spectrum of A. This is of course essential
in the axiomatic formulation of quantum mechanics, especially in the Heisenberg picture
where the tools are the observables namely are selfadjoint operators.

But this notion is also useful in geometry. In special relativity, we consider fields ¢ (%) for
7 € R* and the electric and magnetic fields £, B € Function(M = R* R3). Einstein intro-
duced in 1915 the gravitational field and the equation of motion of matter. But a problem
appeared: what are the physical meaning of coordinates z* and equations of fields? Assume
the general covariance of field equation. If g,, (x) or the tetradfield e/ (x) is a solution (where
I is a local inertial reference frame), then, for any diffeomorphism ¢ of M which is active or
passive (i.e. change of coordinates), e/’ (z) = 822”;)V e, () is also a solution. As a consequence,
when relativity became general, the points disappeared and it remained only fields on fields in
the sense that there is no fields on a given space-time. But how to practice geometry without
space, given usually by a manifold M? In this later case, the spectral approach, namely the
control of eigenvalues of the scalar (or spinorial) Laplacian return important informations on
M and one can even address the question if they are sufficient: can one hear the shape of
M?

There are two natural points of view on the notion of space: one is based on points (of a
manifold), this is the traditional geometrical one. The other is based on algebra and this is
the spectral one. So the idea is to use algebra of the dual spectral quantities.

This is of course more in the spirit of quantum mechanics but it remains to know what is a
quantum geometry with bosons satisfying the Klein-Gordon equation ((J + m?)iy(F) = s;(7)
and fermions satisfying (i — m)y(Z) = s¢(Z) for sources s, s;. Here ¢ can be seen as a
square root of [J and the Dirac operator will play a key role in noncommutative geometry.

In some sense, quantum forces and general relativity drive us to a spectral approach of
physics, especially of space-time.

Noncommutative geometry, mainly pioneered by A. Connes (see [25/31]), is based on a
spectral triple (A, H, D) where the %-algebra A generalizes smooth functions on space-time
M (or the coordinates) with pointwise product, H generalizes the Hilbert space of above
quoted spinors ¢ and D is a selfadjoint operator on ‘H which generalizes @ via a connection
on a vector bundle over M. The algebra A also acts, via a representation of x-algebra, on H.

Noncommutative geometry treats space-time as quantum physics does for the phase-
space since it gives a uncertainty principle: under a certain scale, phase-space points are
indistinguishable. Below the scale A™!, a certain renormalization is necessary. Given a
geometry, the notion of action plays an essential role in physics, for instance, the Einstein—
Hilbert action in gravity or the Yang—Mills—Higgs action in particle physics. So here, given
the data (A, H, D), the appropriate notion of action was introduced by Chamseddine and
Connes |11] and defined as

S(D, A, f) = Tr (f(D/A))



where A € RT plays the role of a cut-off and f is a positive even function. The asymp-
totic series in A — oo yields to an effective theory. For instance, this action applied to
a noncommutative model of space-time M x F with a fine structure for fermions encoded
in a finite geometry F' gives rise from pure gravity to the standard model coupled with
gravity |12,[21,31].

The purpose of these notes is mainly to compute this spectral action on few examples like

manifolds and the noncommutative torus.
In section [I, we present standard material on pseudodifferential operators over a compact
Riemannian manifold. A description of the behavior of the kernel of a WDO near the diagonal
is given with the important example of elliptic operators. Then follows the notion of Wodzicki
residue and its computation. The main point being to understand why it is a residue.

In section [2] the link with the Dixmier trace is shown. Different subspaces of compact op-
erators are described in particular, the ideal £1°°(H). Its definition is on purpose because in
renormalization theory, one has to control the logarithmic divergency of the series 3%, n=1.
We will see that this “defect” of convergence of the Riemann zeta function (in the sense that
this generates a lot of complications of convergence in physics) is in fact an “advantage”
because it is precisely the Dixmier trace and more generally the Wodzicki residue which are
the right tools which mimics this zeta function: firstly, this controls the spectral aspects of a
manifold and secondly they can be generalized to any spectral triple.

In section [3] we recall the basic definition of a Dirac (or Dirac-like) operator on a compact
Riemannian manifold (M, g) endowed with a vector bundle E. An example is the (Clifford)
bundle £ = C¢ M where CL T M is the Clifford algebra for € M. This leads to the notion
of spin structure, spin connection V° and Dirac operator [) = —ic o V¥ where c is the
Clifford multiplication. A special focus is put on the change of metrics ¢ under conformal
transformations.

In section |4]is presented the fundamentals of heat kernel theory, namely the Green function
of the heat operator e/®, t € R*. In particular, its expansion as t — 0% in terms of coefficients
of the elliptic operator A, with a method to compute the coefficients of this expansion is
explained. The idea being to replace the Laplacian A by D? later on.

In section [f] a noncommutative integration theory is developed around the notion of
spectral triple. This means to understand the notion of differential (or pseudodifferential)
operators in this context. Within differential calculus, the link between the one-form and the
fluctuations of the given D is outlined.

Section [6] concerns few actions in physics, like the Einstein—Hilbert and Yang-Mills ac-
tions. The spectral action Tr ( f(D/A)) is justified and the link between its asymptotic
expansion in A and the heat kernel coefficients is given via the noncommutative integrals of
powers of |D|.

Section [7| gathers several results on the computation of a residue of a series of holomorphic
functions, a real difficulty since one cannot commute residue and infinite sums. The notion
of Diophantine condition appears and allows nevertheless this commutation for meromorphic
extension of a class of zeta functions.

Section [§] is devoted to the computation of the spectral action on the noncommutative
torus. After the very definitions, it is shows how to calculate with the noncommutative
integral. The main technical difficulty stems from a Diophantine condition which seems
necessary (but is sufficient) since any element of the smooth algebra of the torus is a series of



its generators, so the previous section is fully used. All proofs are not given, but the reader
should be aware of all the main steps.

Section [9] is an approach of non-compact spectral triples. This is mandatory for physics
since, a priori, the space-time is not compact. After a quick review on the difficulties which
occur when M = R? due to the fact that the Dirac operator has a continuous spectrum,
the example of the Moyal plane is analyzed. This plane is a non-compact version of the
noncom-mutative torus. Thus, no Diophantine condition appears, but the price to pay is
that functional analysis is deeply used.

For each section, we suggest references since this review is by no means original.
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Notations:

N ={1,2,...} is the set of positive integers and Ny = NU{0} the set of non negative integers.

On RY, the volume form is doz = da' A -+ A da?.
S? is the sphere of radius one in dimension d. The induced metric:

(1YY dey A= NdE; A -+ A dEy]
1

dg = |

d
]:
restricts to the volume form on S

M is a d-dimensional manifold with metric g.

U,V are open set either in M or in R%.

We denote by dvol, the unique volume element such that dvoly (&, -+ ,&;) = 1 for all posi-
tively oriented g-orthonormal basis {1, -+ ,&; } of T, M for x € M. Thus in a local chart

Vdet g, |dx| = |dvol,|.

When a € N? is a multi-index, we define

xT Tr1 T x2 xq

d
0% == 9% 9¥...0% || ::Zai, al == oay- - ag.
i=1



For £ € R%, [¢| == (Zk:1 1€k ) is the Euclidean metric.
H is a separable Hilbert space and B(H), (), LP(#H) denote respectively the set of bounded,
compact and p-Schatten-class operators, so £!(H) are trace-class operators.

1 Wodzicki residue and kernel near the diagonal

The aim of this section is to show that the Wodzicki’s residue WRes is a trace on the set
U DO(M) of pseudodifferential operators on a compact manifold M of dimension d.

Let us first describe the steps:

- Define WRes(P) = 2R_eos ((s) for P € YDO™ of order m and ¢ : s € C — Tr(PA™?),
which is holomorphic when R(s) > (d + m).

- If k¥ (z,y) is the kernel of P, then its trace can be developed homogeneously as the
following : tr (kp(x, y)) = Z?:—(m—i—d) aj(z,r—y)—cp(z)log | —y|+- - - where a; is homoge-
neous of degree j in y and cp is a density on M defined by cp(z) := ﬁ qd—1 tT (de(x, f)) dg;
here, 0¥ is the symbol of P of order —d.

The Wodzicki’s residue has a simple computational form, namely WRes P = [, cp(x) |dx|.
Then, the trace property follows.

References for this section: Classical books are |[101,]104]. For an orientation more in the
spirit of noncommutative geometry since here we follow [88.[89] based on [3}34], see also the
excellent books [50,84}85],/106,107].

1.1 A quick overview on pseudodifferential operators
In the following, m € C.

Definition 1.1. A symbol o(x,€&) of order m is a C* function: (v,§) € U x R4 — C
satisfying
(i) 09000 (2,€)| < Cuplz) (1+ [€))R™I81, Cos bounded on U.
(i) We suppose that o(x,§) ~ 350 0m—;(x,§) where oy, is homogeneous of degree k in £
where >~ means a controlled asymptotic behavior
]8;“8?(0 -3 am_j)(x,§)| < Onap(z) [€FM=N=B1 for (€] > 1 with Cnep bounded on U.

J<N

The set of symbols of order m is denoted by S™(U x RY).
A function a € C°(U x U x R%) is an amplitude of order m, if for any compact K C U
and any a, B,y € N there exists a constant Crap, such that

050707 a(x,y,€)| < Cragy (1+[ENN™W T Vi, ye K, ¢ e R
The set of amplitudes is written A™(U).

For o0 € S™(U x R%), we get a continuous operator o (-, D) : u € C®(U) — C*°(U) given
by

o, D)(u)(x) = oz, D)(u) = ﬁ/ﬂwd(%f) a(g) e dg (1)



where ~ means the Fourier transform. This operator o(-, D) will be also denoted by Op(o).
For instance,

if o(x,&) = Zaa £, then o(x, D) Zaa ) DS with D, —10,.

Remark that, by transposition, there is a natural extension of o (-, D) from the set D.(U) of
distributions with compact support in U to the set of distributions D'(U).

By definition, the leading term for |«| = m is the principal symbol and the Schwartz kernel
of o(x, D) is defined by

ko‘(:c,D)(x7y) — ﬁ/ o(z,&)e i(z—y) Edé“ = Geylz, 2 —9) (2)

where 7 is the Fourier inverse in variable . Similarly, if the kernel of the operator Op(a)
associated to the amplitude a is

K (,y) = gl [ o,y ©) e de. (3)

Definition 1.2. P : C>®(U) — C*(U) (or D'(U)) is said to be smoothing if its kernel is in
C®(U x U) and YDO~>°(U) will denote the set of smoothing operators.

Form € C, the set WDO™(U) of pseudodifferential operators of order m will be the set of P
such that

P: CX(U) = C*(U), Pu(x) = (o(x, D) + R)(u) where 0 € S™(U x RY), R € WDO™™.
o s called the symbol of P.

Remark 1.3. [t is important to quote that a smoothing operator is a pseudodifferential op-
erator whose amplitude is in A™(U) for allm € R: by @), a(x,y,§) = e @V k(z,y) ¢(£)
where the function ¢ € C°(R?) satisfies [ra ¢(€) dE = (2m)<.

Clearly, the main obstruction to smoothness is on the diagonal since

Lemma 1.4. k°@®P) js C™ outside the diagonal.

Proof. & is smooth since it is given for y # 0 by the oscillatory integral
[ oty eveds = [ (Phoyeedg
R4 R

where k is an integer such that k > R(m)+nand P, = P(y, D) is chosen with P,(e®*) = e™¢;
for instance P, = ” ‘2 i Yine 35 The last integral is absolutely converging. O

Few remarks on the duality between symbols and pseudodifferential operators:
o(z,8) € S™U x RY) +— ky(z,y) € C°(U x U x RY) «— A = Op(c) € YUDO™
where we used the following definition

oMz, &) == e Az — e™Y).



Moreover,

aa kA('Tv Y, 6)\3/::2 )

DI
KA () = g / A,y €) de

where k%(z,y, €) is the amplitude of k2 (x, y). Actually, 0% (z, &) = e'PePv kA(z, y, €)=, and
¢PePv =14 iDeD, — $(DeDy)? + ---. Thus A = Op(c?) + R where R is a regularizing
operator on U.

A point of interest is that differential operators are local: if f =0 on U¢ (complementary
set of U) then Pf = 0 on U¢. While pseudodifferential operators are pseudo-local: Pf is
smooth on U when f is smooth.

There are two fundamental points about WDO’s: they form an algebra and this notion is
stable by diffeomorphism justifying its extension to manifolds and then to bundles:

Theorem 1.5. (i) If P, € YDO™ and Py € WDO™2, then PP, € WDO™ ™2 with symbol

oM P, &) ~ Y B ogel (w,8) 000 ().

a€eNd

The principal symbol of PPy is

oife (2,6) = ol (z,8) 0l (x,€).

(ii) Let P € WDO™(U) and ¢ € Diff (U, V) where V is another open set of R%. The operator
¢ P f€C®(V)— P(fog)od! satisfies p.P € WDO™(V) and its symbol is

o (,€) = ohr (67 (@), (d)'¢) + > S dulw,€) 90" (67 (@), (do)'€)

|| >0

where ¢q 18 a polynomial of degree o in &. Moreover, its principal symbol is
00" (2,8) = ol (67 (2), (d9)'€).
In other terms, the principal symbol is covariant by diffeomorphism: o%<¥,, = ¢.or

While the proof of formal expressions is a direct computation, the asymptotic behavior re-
quires some care, see [101,[104].

An interesting remark is in order: of(x,£) = e7@¢ P(z — €'@¢), thus the dilation & — ££
with ¢ > 0 gives

m —ztw{Peztclff_t m P(ZL‘ té’)wt mZCr {L’tﬁ)—a (l‘ §)+O( )

j>0
Thus, if P € WDO™(U) with m > 0,

ol (z,6) = tli}m t=m 7@ poith(@) where h € C*°(U) is (almost) defined by dh(z) = €.



1.2 Case of manifolds

Let M be a (compact) Riemannian manifold of dimension d. Thanks to Theorem [L.5] the
following makes sense:

Definition 1.6. WDO™(M) is defined as the set of operators P : C*(M) — C*®(M) such
that

(i) the kernel k¥ € C°°(M x M) off the diagonal,

(ii) The map : f € C=(6(U)) = P(fo¢) o ¢ € C=(o(U)) is in WDO™((U))
for every coordinate chart (U, ¢ : U — R?).

Of course, this can be generalized:

Definition 1.7. Given a vector bundle E over M, a linear map P : T°(M,E) — I'°(M, E)
is in WDO™(M, E) when k¥ is smooth off the diagonal, and local expressions are WDO s
with matriz-valued symbols.

The covariance formula implies that o is independent of the chosen local chart so is globally
defined on the bundle T*M — M and o7 is defined for every P € W DO™ using overlapping
charts and patching with partition of unity.

An important class of pseudodifferential operators are those which are invertible modulo
regularizing ones:

Definition 1.8. P € WDO™(M, E) is elliptic if of(x,&) is invertible for all ¢ € TM?,
£40.

This means that |07 (x,€)| > ¢ (x)||™ for |€] > ca(z), € U where ¢y, ¢y are strictly positive
continuous functions on U.
This also means that there exists a parametriz:

Lemma 1.9. The following are equivalent:
(i) Op(c) € WDO™(U) is elliptic.
(ii) There exist o' € S™™(U x RY) such that coo’ =1 or o’ oo = 1.
(7ii) Op(o) Op(c’) = Op(c’) Op(o) = 1 modulo VDO~>(U).

Thus Op(o’) € WDO~™(U) is also elliptic.

At this point, it is useful to remark that any P € WDO(M, E) can be extended to a bounded
operator on L*(M, E) when (m) < 0. Of course, this needs an existing scalar product for
given metrics on M and FE.

Theorem 1.10. When P € WDO™™(M, E) is elliptic with R(m) > 0, its spectrum is dis-
crete when M is compact.

Proof. We need to get the result first for an open set U, for a manifold M and then for a
bundle £ over M.

For any s € R, the usual Sobolev spaces H*(R?) (with H°(R?) = L?(R%)) and H:(U)
(defined as the union of all H*(K') over compact subsets K C U) or Hj .(U) (defined as the
set of distributions u € D'(U) such that ¢u € H*(R?) for all ¢ € C>°(U)) can be extended
for any manifold M to the Sobolev spaces HZ(M) (obvious definition) and Hj .(M): if

(U, ¢ : U — R?) is a local chart and x € C° (qb(U)), we say that a distribution v € D'(M)

10



is in HS (M) when (¢_1)*(§ u) € H*(RY). When M is compact, Hi (M) = H:(M) (thus
denoted H*(M). Using Rellich’s theorem, the inclusion H:(U) — HE(U) for s < t is compact.
Since P : H}(M) — H fozmm)(M ) is a continuous linear map for a (non-necessarily compact)
manifold M, both results yield that P is compact. Finally, the extended operator on a bundle
is P: L*(M,E) — H®™(M,E) — L*(M, E) where the second map is the continuous
inclusion, so P being compact as an L? operator has a discrete spectrum. O

We rephrase a previous remark (see [4, Proposition 2.1]):

Let E be a vector bundle of rank r over M. If P € WDO~™(M, E), then for any couple of
sections s € I'°(M, E), t* € I'°(M, E*), the operator f € C*®(M) — (t*, P(fs)) € C*(M)
is in WDO™(M). This means that in a local chart (U, ¢), these operators are r X r matrices
of pseudodifferential operators of order —m. The total symbol is in C°(T*U) ® End(E) with
End(E) ~ M,(C). The principal symbol can be globally defined: of, (z,§): E, — E, for
x € M and £ € T7M, can be seen as a smooth homomorphism homogeneous of degree —m
on all fibers of T* M. Moreover, we get the simple formula which could be seen as a definition
of the principal symbol

of (z,6) = limt™ (e’ith -P- eith> (x) forz e M, € TiM (4)

-m t—oo

where h € C*°(M) is such that d,h = .

1.3 Singularities of the kernel near the diagonal

The question to be solved is to define a homogeneous distribution which is an extension on
R? of a given homogeneous symbol on R¥\{0}. Such extension is a regularization used for
instance by Epstein—Glaser in quantum field theory.

The Schwartz space on R? is denoted by S and the space of tempered distributions by &'.

Definition 1.11. For fy(§) := f(X), A € RY, define 7 € 8" — 7y by (7o, ) == AT, fr1)
forall f€S.

A distribution T € S’ is homogeneous of order m € C when 7\, = \™ .

Proposition 1.12. Let o € C°(RN\{0}) be a homogeneous symbol of order k € 7Z.
(i) If k > —d, then o defines a homogeneous distribution.
(ii) If k = —d, there exists a unique obstruction to the extension of o given by

Co = U(S) df,

Sd—1

namely, one can at best extend o in 7 € 8" such that
3= A7+ co log(\) dy). ()

Proof. (i) For k > —d, o is integrable near zero, increases slowly at 0o, so defines by extension
a unique distribution 7 € &’ which will be homogeneous of order k.

(77)Assume k = —d. Then o extends to a continuous linear form L, (f) 1= [gpa f(§) 0(§) d
on S :={f € S|f(0) =0} By Hahn-Banach theorem, L, extends to S’ and L, € FE
where F := {17 € §' |15, = L, } is given by the direction d.

11



This affine space E is stable by the endomorphism 7 — A7y: actually if f € Sy, fr-1 € Sy
and

(o ) = (1 i) = Lo(fa) = [ FOT0(€)de = [ £€) o() de = Lo(f),

thus A1\ = L, on Sy.
Moreover, A% (8y)x = do; thus there exists ¢()\) € C such that

= AT 4+ (A A (6)

for all 7 € E. The computation of ¢(\ for a specific example in E gives ¢(\) = ¢, log()\): for
instance, choose g € C2°(]0, oo]) which is 1 near 0 and define 7 € 8’ by

(. f) = Lo (£ = FO)g(- ) = [ (£(&) = FO)g(leD) () de, f € S.
Thus if f(0) = 1, we get ¢c(A)A™(do, f) = c(A)A™%, so by (6)

cMA = (7, i) =X U7, f)
_/ (A€) — g(I€) o(€) dg — A / &) — g(€l) o (&) de

= 3 [ (90N€D - gl o€ de = —x~%e, /0 (9(NgD) — g(le]) 44

with ¢y 1= g1 0(€) d42E. Since

3T (oieh - 9€) 46 =X [ el die] = —9(0) = 1.

we get ¢(A\) = ¢, log(A). Thus, when ¢, = 0, every element of E is a homogeneous distribution
on R? which extends the symbol o.

Conversely, let 7 € S’ be a homogeneous distribution extending o and let 7 € E. Since
T — 7 is supported at the origin, we can write 7 = 7 + 3 j4j<n @a 0% Where a, € C and

0=7 = AT = oA log(Ndo + . aad (AT = 1)0°%.

1<[a|<N

The linear independence of (0%dy) gives a, = 0, Va,. So ¢, = 0 and 7 € E. The condition
¢, = 0 is so necessary and sufficient to extend o in a homogeneous distribution. And in the
general case, one can at best extend it in a distribution satisfying , but it is only possible
with elements of F. ]

In the following result, we are interested by the behavior near the diagonal of the kernel
kP for P € WDO. For any 7 € S, we choose the decomposition as 7 = ¢o7+ (1 —¢) o7
where ¢ € C®(R?) and ¢ = 1 near 0. We can look at the infrared behavior of 7 near the
origin and its ultraviolet behavior near infinity. Remark first that, since ¢ o 7 has a compact
support, (¢poT1) € &', so the regularity of 7~ depends only of its ultraviolet part ((1 —9) OT)V.
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Proposition 1.13. Let P € YWDO™(U), m € Z. Then, in local form near the diagonal,

EP(ry) = > ajlw,x—y) —cp(z)loglz —y| + O(1)
—(m+d)<j<0

where a;(z,y) € C™ (U X U\{x}) is homogeneous of order j in y and cp(x) € C(U) is
given by

er(e) = gy [, ol €)de. (7)

Proof. We know that o (z,&) ~ ¥, oF (x,€) and by @), k¥ (z,y) = 05, (z, x — y) so we
need to control o, (z,x —y) when y — 0.

Assume first that o' (z,€) is independent of x:
For —d < j < 'm, 0,(§) extends to 7; € §’. For j > —d, this extension is homogeneous (of
degree j) and unique.
For j = —d, we may assume that 7_; satisfies . Thus 7 := of — >7L 4 7j € 8’ behaves in
the ultraviolet as a integrable symbol. In particular 7~ is continuous near 0 and we get

m

o (y) = 3 7 (y) + O1). (8)

j=—d

Note that the inverse Fourier transform of the infrared part of 7; is in C*°(R?) while those
of its ultraviolet part is in C'*° (Rd\{ 0 }), so 7; is smooth near 0.
Moreover, for j > —d, 7; is homogeneous of degree —(d + j) while for j = —d,

Fuy) = A ()] (W) = [ — ey Iog(N]"(y) = aly) — by ey log A

For A\ = |y|™!, we get

m(ﬁ) = 7?;/d(ﬁ> - (27}')‘1 Co_q4 log |y|

Summation over j in yields the result.
Assume now that o (x,€) is independent of x:

We do the same with families { 7, },ey and {7, }zev. Their ultraviolet behaviors are those
of smooth symbols on U x R% so given by smooth functions on U x R\ {0} and for 7, by a
continuous function on U x R?. For the infrared part, we get smooth maps from U to &(R?)’
(distributions with compact support), thus applying inverse Fourier transform, we end up
with smooth functions on U x R?. Actually, for 7;, with j > —d, this follows from the fact
that it is the extension of o;(z,-) which is integrable near the origin: let f € S,

(60 Ty f) = (T 00 f) = [ 0(6) () 03(a, ) d.

While for j = —d,

(60 Taur f) = (aws00 ) = [ 0(6) (£€) = F(0)) o-al, €) e,

13



and the map  — ¢ o 7_g, is smooth from U to £(R?)". In conclusion,

b/-gﬂy('ra Z/) = Z CLj(LZ', y) - CP(:C) IOg |y‘ + R(Q?, y)
—(m+d)<j<0

where a;(z,y) is a smooth function on U x R?\{ 0}, is homogeneous of degree j in y, cp
is given by @ and R(z,y) is a function, continuous on U x R So we get the claimed
asymptotic behavior. O

Theorem 1.14. Let P € VDO™(M, E) with m € Z. Then, for any trivializing local coordi-
nates

0

tr(kP(x,9)) = Y aj(z, 2 —y) — cpla)log |z — y| + O(1),
j=—=(m+d)

where a; is homogeneous of degree j in y, cp is intrinsically locally defined by

cp() == Gha /S (o, 6)) de. (9)

Moreover, cp(x)|dz| is a 1-density over M which is functorial with respect to diffeomorphisms

6:
co.p (1) = b (cp(@)). (10)

Proof. The asymptotic behavior follows from Proposition[I.13|but we first have to understand
why cp is well defined:
Assume first that E is a trivial line bundle and P is a scalar YDO.

Define a change of coordinates by y := ¢~!(z). Thus k¥(z,2') 2 k%P (y, /) with

Ky, y) = 1) K (8(), 6())

= > L) [ai(ew), o) — o)) — cr (@) logle(y) — o) | + O1).

j=—(m+d)

A Taylor expansion around <¢(y), d(y) - (y— y’)) of a; gives

/

a; (6(y), o(y) — o)) =~ ly — 'V a;(6(y), & (y) - =5 ) + -+,

since a; <¢(y), ) is smooth outside 0, so we get only homogeneous and continuous terms.
Moreover the only contribution to the log-term is

o) cr(0(9)) loglé(y) — s(v)| = [Ts(y)] cr(6(y)) log lo(y) — o(y)] + O(1)

and we get

co.p(y) = Js ()] cr(0(y))-

In particular cp(x)|dz! A --- A dz?| can be globally defined on M as a 1-density. (Recall
that a a-density on a vector space E of dimension n is any application f : A"E — R such
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that for any A € R, f(Az) = |A|*f(z) and the set of these densities is denoted |A|*E*; this
is generalized to a vector bundle E over M where each fiber is |A|*E%. The interest of the
bundle of 1-densities is to give a class of objects directly integrable on M. In particular, we
get here something intrinsically defined, even when the manifold is not oriented).
General case:

P acts on section of a bundle. By a change of trivialization, the action of P is conjugate
on each fiber by a smooth matrix-valued map A(z), so kf'(z,2') — A(x) kP (x,2)A(2").
We are looking for the logarithmic term: only the O-order term in A(z’) will contribute
and tr(A(:E)*lkP (x,2")A(z’ )) has the same logarithmic singularity than the similar term
tr(A(x)*lkP(x,x’)A(x)) = tr(kp(x,m’)) near the diagonal. Thus cp(z) is independent of a
chosen trivialization.

Similarly, if P is not a scalar but End(FE)-valued, the above proof can be generalized (the
space of C’OO((M, IN(M) ® End(E)) of End(E)-valued densities is a sheaf). O

Remark that, when M is Riemannian with metric g and d,(x,y) is the geodesic distance,
then
0

(K (z,9) = > as(@a—y) — cp(x)log (dy(x,y)) + O(1),

j=—(m+d)

since there exists ¢ > 0 such that ¢z — y| < dy(z,y) < cjz —y|.

1.4 Wodzicki residue

The claim is that [, cp(z)|dz| is a residue.
For this, we embed everything in C. In the same spirit as in Proposition [I.12] one obtains
the following

Lemma 1.15. Every o € C* (Rd\{O}) which is homogeneous of degree m € C\Z can be
uniquely extended to a homogeneous distribution.

Definition 1.16. Let U be an open set in R? and Q be a domain in C.
A map o : Q — S™U x R?) is said to be holomorphic when
the map: z € Q — o(2)(x,€) is analytic for all z € U, £ € R4,
the order m(z) of o(z) is analytic on (Q,
the two bounds of Definition [1.1] (i) and (i) of the asymptotics 0(2) 2= 32, Om(z)—;(2)

are locally uniform in z.

This hypothesis is sufficient to get:
The map: z — 0y,(2)—;(2) is holomorphic from 2 to C* (U x RN\{0 })
The map 9,0 (z)(x,€) is a classical symbol on U x R? and one obtains:

0.0(2)(x,8) =Y 0:0m(z)—i(2)(x, §).

720

Definition 1.17. The map P : Q C C — VDO(U) is said to be holomorphic if it has the
decomposition

P(z) = o(2)(-, D) + R(2)
(see definition (1)) where o: Q — S(U x R?) and R : Q@ — C>(U x U) are holomorphic.
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As a consequence, there exists a holomorphic map from 2 into W DO(M, E) with a holo-
morphic product (when M is compact).

Example 1.18. Elliptic operators:

Recall that P € WDO™(U), m € C, is elliptic if there exist strictly positive continuous
functions ¢ and C on U such that |0 (z,£)| > c(x) [£|™ for ] > C(z), z € U. This essentially
means that P is invertible modulo smoothing operators. More generally, P € WDO™(M, F)
is elliptic if its local expression in each coordinate chart is elliptic.

Let Q € VDO™(M, FE) with ®(m) > 0. We assume that M is compact and @ is elliptic.
Thus @ has a discrete spectrum and we suppose Spectrum(Q)) "R~ = (). Since we want to
integrate in C, we assume that there exists a curve I' coming from 400 along the real axis
in the upper half plane, turns around the origin and goes back to infinity in the lower half

plane whose interior contains the spectrum of ). The curve I' must avoid branch points of
A at z=0.

When R(s) < 0, Q° = = Jp A* (A — Q)~' d\ makes sense as operator on L*(M, E).
Actually, Q* € WDO™ (M, E) and (A—Q)~! = o(\)(+, D)+ R(\) where R()) is a regularizing
operator and o(A)(-, D) has a symbol smooth in A such that o(\)(z,&) ~ 350 @—m—j(A, 7,&)
with a, (), z,¢) homogeneous of degree n in (A/™ &).

The map s — Q° is a one-parameter group containing Q' = 1 and Q' = @ which is
holomorphic on R(s) < 0.

We want to integrate symbols, so we will need the set S;,; of integrable symbols. Using

same type of arguments as in Proposition and Lemma [1.15] one proves
Proposition 1.19. Let

L:o e 84(RY = L(o) =5 (0) = gy /R o(€) de.

Then L has a unique holomorphic extension L on S€\%(RY).
Moreover, when o(§) ~ 3 om—j(§), m € C\Z,

L(o) = (O’ - z;Vij)V(O) = ﬁ /Rd (U - z;va])@) dg

where m is the order of o, N is an integer with N > R(m) + d and 7,,_; is the extension of

Om—j of Lemma[1.13



L is holomorphic extension of L on SC\*(R%) which is unique since every element of S\%(R%)
is arcwise connected to S, (R?) via a holomorphic path within S€\*(R%).
This result has an important consequence here:

Corollary 1.20. If o : C — S(R%) is holomorphic and order(a(s)) = s, then Z(a(s)) is
meromorphic with at most simple poles on Z and for p € 7Z,

ResL(a(s)) =~ [, o-alp)(©) de.

Proof. Using Lemma [L.15 one proves that if m(s) is holomorphic near m(s) = p, then
E(O’(S)) is meromorphic near p.

Now we look at the singularity near p € Z. In the half plane { R(s) < p }, only the infrared
part of 7,,,_;(s) is a problem since its ultraviolet part is holomorphic. For 0 < j < p+m and
R(s) < p, 05_j(5)(§) is integrable near 0 thus defines its unique extension 7,_;(s). So, the
only possible singularity near s = p could come from

1 o
ek /glqas—j(s)(é) d§ = —ﬁ/o eI ldt/lE<1 0s—i()() d(F)
1

= — Gy 5=t d s 0s—;(5)(§) d€.
where we used for the first equality o,_;(s)(&) = |€|S*jas_j(s)(|%|). Thus, E(a(s)) has at
most only simple pole at s = —d + 7. ]

We are now ready to get the main result of this section which is due to Wodzicki |[111}112].

Definition 1.21. Let D € VDO(M, E) be an elliptic pseudodifferential operator of order 1
on a boundary-less compact manifold M endowed with a vector bundle E.
Let VDO, (M, E) := {Q € YVDO“(M,E) | %(order(Q)) < —d} be the class of pseudodif-
ferential operators whose symbols are in Sy, i.e. integrable in the &-variable.
In particular, if P € VDO (M, E), then its kernel k¥ (x,z) is a smooth density on the
diagonal of M x M with values in End(E).

For P € WDO%(M, E), define

WRes P := Res Tr (PID|™*). (11)

This makes sense because:

Theorem 1.22. (i) The map P € VDO (M,E) — Tr(P) € C has a unique analytic
extension on WDOC\2(M, E).

(ii) If P € WDO%(M, E), the map: s € C — Tr (P]D\_S> has at most simple poles on Z
and

WRes P = — /M cp(x) |dz| (12)

is independent of D. Recall (see Theorem |1.14) that cp(z) = gra Jsa tr(afd(:c,f)) d€.
(iii) WRes is a trace on the algebra WDO* (M, E).
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Proof. (i) The map s — Tr (P]D|_S) is holomorphic on C and connect P € WDO%(M, E)

to the set WDO;,, (M, E) within W DO®\*(M, E), so a analytic extension is necessarily unique.
(#7) one apply the above machinery:
(1) Notice that Tr is holomorphic on smoothing operator, so, using a partition of unity,
we can reduce to a local study of scalar W DO'’s.

(2) First, fix s = 0. We are interested in the function Ly(c) = Tr (gb a(a:,D)) with
0 € Sint(U x R?) and ¢ € C=(U). For instance, if P = o(-, D),

T(0P) = | 6@) k" (@.2)|de] = Gl [ 6(@) (@) d€ldal = | ¢(a) L(o(a, ) |do],

so one extends Ly to SC\Z(U x R?) with Proposition [1.19|via Lg(c) = [;; () L (a(x, )) |dx|.
(3) If now o(z,&) = o(s)(x,&) depends holomorphically on s, we get uniform bounds in

x, thus we get, via Lemma |1.15| applied to E¢ (J(s)(x, )) uniformly in z, yielding a natural

extension to L, (0(3)) which is holomorphic on C\Z.
When order(o(s)) = s, the map Ly (a(s)) has at most simple poles on Z and for each
p € Z Res Ly(0(s)) =~y Jy Joomr (@) 0-a(p) (2, €) d€ |d| = — Jyy §(x) cpy() |dz| where

we used (9) with P = Op(ap(x, f))
(4) In the general case, we get a unique meromorphic extension of the usual trace Tr on
U DO%(M, E) that we still denoted by Tr).

When P : C — WDO%(M, E) is meromorphic with order((P(S)) = s, then Tr (P(s)) has at
most poles on Z and 1}35 Tr (P(s)) = — [y cpp)(x) |dx| for p € Z. So we get the claim for

the family
P(s):= P|D|*.

(iii) Let Pi, P, € WDO*(M, E). Since Tr is a trace on WDO®\Z(M, E), we get by (i),
Tr (PLP3|D|~*) = Tr (B3|D|~*Py). Moreover

WRes(PPy) = Res Tr (PDI*P) = Res Tr (PPA|D| ™) = WRes(P,Py)

where for the second equality we used so the residue depends only of the value of P(s)
at s = 0. [

Note that WRes is invariant by diffeomorphism:
if ¢ € Diff(M), WRes(P) = WRes(¢.P) (13)
which follows from ({10). The next result is due to Guillemin and Wodzicki.

Corollary 1.23. The Wodzicki residue WRes is the only trace (up to multiplication by a
constant) on the algebra WDO~™(M, E), m € N, when M is connected and d > 2.

Proof. The restriction to d > 2 is used only in the part 3) below. When d = 1, T*M is
disconnected and they are two residues.
1) On symbols, derivatives are commutators:

(27, 0] = 0,0, &;,0] = —i0,i0.
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2) If o¥; =0, then o (x,€) is a finite sum of commutators of symbols:
When ¢ ~ ¥, ol with m = order(P), by Euler’s theorem,

d
> &0 0y =(m—j)oy,
k=1

(this is false for m = j!) and

ZE SkO'm —j —Zzagkfkdm ]:i(m—j—{—d)gi_j,

”M&

So P =34, [fk T, T ] (where 7 & i35 ;== o) _; and here we need for m — j = —d that
ol =0!).
d

Let T be another trace on WDO%(M, E). Then T(P) depends only on %, because
T([- ) = 0.

3) We have Jga—1 0¥ (2, &) d|€| = 0 if and only if o, is sum of derivatives:
The if part is direct (less than more !).
Only if part: of, is orthogonal to constant functions on the sphere S¢~! and these are
kernels of the Laplacian: Asf = 0 < df = 0 <= f = cst. Thus Agu1h = apd(gd 1

has a solution h on S?1. If h(€) := |¢|~%+2 h(@) is its extension to R?\{ 0}, then we get

Agah(€) = |€|oF (\EI) = o¥,(€) because Aga = 71~ dé’r(rd 19,) + 772 Aga-1. This means
that h is a symbol of order d — 2 and 8JL is a symbol of order d — 1. As a consequence,
ol =0 02 h = —i ¢ _1[0¢,h, 2¥] is a sum of commutators.

4) End of proof:

ol (x,€) — %ﬁl) cp(x) is a symbol of order —d with zero integral, thus is a sum of com-

mutators by 3) and T(P) = T(Op(|£|_d cp(x)) for all T € WDOZ%(M, E). In other words,
the map u: f € C*(U) — T(Op(f]f\_d)) is linear, continuous and satisfies (9,1 f) = 0

because 9,k (f) |€]7¢ is a commutator if f has a compact support and U is homeomorphic to
R?. As a consequence, j is a multiple of the Lebesgue integral:

T(P) = u<0p($)> =c /M cp(x) |dz| = ¢ WRes(P). O

Example 1.24. Laplacian on a manifold M : Let M be a compact Riemannian manifold of
dimension d and A be the scalar Laplacian which is a differential operator of order 2. Then

WhRes((1+ A)~?) = Vol (8) = &5

Proof. (1+ A)~%2 € WDO(M) has order —d and its principal symbol O'(1+A) “* satisfies
—d/2 i —d/2 -~
U @) = — (g7 &) T =~ Il
So gives
Whes((1+2)~2) = [ Jdo| [ 1lgll; 4 = [ |dely/detg, Vol (s*!
es((14 872) = [ ao| [ Vel de = [ |da] Jdet g, Vol ()
= Vol (1) [ |dvol,| = Vol (5*1). 0
o ( ) M| voly| 0 ( )
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2 Dixmier trace

References for this section: [34,50./69}89,/106,107].

The trace on the operators on a Hilbert space H has an interesting property, it is normal.
Recall first that Tr acting on B(H) is a particular case of a weight w acting on a von Neumann
algebra M: it is a homogeneous additive map from positive elements M™ := {aa* | a € M }
to [0, 0o].

A state is a weight w € M* (so w(a) < oo, Va € M) such that w(1) = 1.
A trace is a weight such that w(aa*) = w(a*a) for all a € M.

Definition 2.1. A weight w is normal if w(sup a,) = sup w(a,) whenever (ay,) C M™ is

an increasing bounded net.

This is equivalent to say that w is lower semi-continuous with respect to the o-weak topology.

Lemma 2.2. The usual trace Tr is normal on B(H).

Remark that the net (a,), converges in B(#H) and this property looks innocent since a trace
preserves positivity.

Nevertheless it is natural to address the question: are all traces (in particular on an arbitrary
von Neumann algebra) normal? In 1966, Dixmier answered by the negative [35] by exhibiting
non-normal, say singular, traces. Actually, his motivation was to answer the following related
question: is any trace w on B(H) proportional to the usual trace on the set where w is finite?

The aim of this section is first to define this Dixmier trace, which essentially means
Trpi(T)“ =7 limpy 00 log ~ S0 n(T), where the fu,(T') are the singular values of T ordered
in decreasing order and then to relate this to the Wodzicki trace. It is a non-normal trace on
some set that we have to identify. Naturally, the reader can feel the link with the Wodzicki
trace via Proposition . We will see that if P € WDO 4(M) where M is a compact
Riemannian manifold of dimension d, then,

Trpip(P) = & WRes(P / /S (@, &) dE|dx|
“M

where S*M is the cosphere bundle on M.

The physical motivation is quite essential: We know how ZneN* = diverges and this is
related to the fact the electromagnetic or Newton gravitational potentlals are in ; which
has the same singularity (in one-dimension as previous series). Actually, this (logarithmic-
type) divergence appears everywhere in physics and explains the widely use of the Riemann
zeta function ¢ : s € C = X, o # This is also why we have already seen a logarithmic
obstruction in Theorem and define a zeta function associated to a pseudodifferential
operator P by (p(s) = %D[‘S) in (1))

We now have a quick review on the main properties of singular values of an operator.

2.1 Singular values of compact operators

In noncommutative geometry, infinitesimals correspond to compact operators: for T' € K(H)
(compact operators), define for n € N

pn(T) :=inf{ || T} || | E subspace of H with dim(E) =n }.
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This could looks strange but actually, by mini-max principle, p,(7") is nothing else than the
(n + 1)th of eigenvalues of |T| sorted in decreasing order. Since lim,, o 1, (T) = 0, for any

e > 0, there exists a finite-dimensional subspace E. such that HT[EEL H < € and this property
being equivalent to T' compact, T" deserves the name of infinitesimal.
Moreover, we have following properties:

pin(T) = pin(T%) = pn([T7).

T € LY(H) (meaning || Ty := Tr(|T]) < 00) <= Y pen in(T) < 00.
pin(A T B) < [|A]| i (T) || B|| when A, B € B(H).

un(UT U*) = un(T) when U is a unitary.

Definition 2.3. For T € K(H), the partial trace of order N € N is on(T) := SN o i (T).
Remark that | T']| < on(T) < N||T|| which implies o, >~ ||-|| on (). Then

on(Th +T5) < on(Th) + on(T3),
ON, (Tl) + O-Nz(T2> S O'N1+N2(T1 + Tg) when Tl,TQ 2 0. (14)

The proof of the sub-additivity is based on the fact that oy is a norm on IC(H). Moreover
T>0= on(T) =sup{Tr(T E) | E subspace of H with dim(F)=n}.

which implies oy (7)) = sup{ Tr(||T E||; | dim(E) = n } and gives the second inequality.
The norm oy can be decomposed:

on(T) = mf{ lally + N |lyll | T = +y with o € L'(H), y € K(H) }.

In fact if oy is the right hand-side, then the sub-additivity gives oy > on(T). To get
equality, let &, € H be such that |T|¢, = pn (7)€, and define zn = <|T| - ,uN(T))EN,
ynv = un(T)Enx + |T|(1 — En) where Ey = Y, n|&n)(&|- If T = U|T| is the polar
decomposition of T', then T'= Uxy + Uyy is a claimed decomposition of 7" and

on(T) < [Uen | +N[Uyn | < loxli+Nllyv ]| < 3 (1a(T)=Npan(T)) +Npia(T) < o (T).

n<N

This justifies a continuous approach with the

Definition 2.4. The partial trace of T of order A € R is
ox(T) :=1inf{ ||lz|s + Myl |T =z +y with x € LY(H), y € K(H) }.

It interpolates between two consecutive integers since the map: A — o (T) is concave for
T € K(H) and moreover, it is affine between N and N + 1 because

ox(T)=on(T)+ (A= N)on(T), where N = [)]. (15)
Thus, as before,
o (Th) + 03, (Ts) = xy 0, (Th + T3), for A\, Ao € RY, 0 < Ty, T € K(H).
We define a real interpolate space between £'(H) and K(H) by

£ = {T € K(H) | T 1= sup 58 < oo}
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If £P(H) is the ideal of operators T' such that Tr (]T]p> < 00, 50 05(T) = O(A'~V/P), we have
naturally
LYH) C LY C LP(H) for p>1, (16)
1T <171 o0 < 1715 -

Lemma 2.5. £ is a C*-ideal of B(H) for the norm ||||1.0c0-
Moreover, it is equal to the Macaev ideal

L% = {T € K(H) | |T]hs = sup 253 < o0 .
) N22 og

Proof. ||*||1,00 is @ norm as supremum of norms. By (15)),

N-1

_ T T
sup %0 < sup sup Yoneo #N(T) + apn(T)
p>e 8P T N>2 0<a<l log(N + «)

and L5 is a left and right ideal of B(H) since ||[AT Bll10o < [|A|l |T]l1,00]| B|| for every
A, B e B(H), T € £H>°, and moreover || T||1.00 = [|T*|l1.00 = 11T |1.00-

This ideal £1* is closed for ||-||;,o: this follows from a 3-e argument since Cauchy sequences
for ||-||1,00 are Cauchy sequences for each norm o, which are equivalent to ||-||. O

Despite this result, the reader should notice that ||-||10c # ||-|[1,+ since the norms are only
equivalent.

2.2 Dixmier trace

We begin with a Cesaro mean of % with respect of the Haar measure of the group R :

Definition 2.6. For A > e and T € K(H), let

A
| ap(T) dp
T)\(T) = Tog A /e ogp p "

Clearly, 0,(T") <logp||T]}1,00 and 7a(T") < ||T'||1,00, thus the map: A — 75(T') is in Cy([e, 00]).
It is not additive on £* but this defect is under control:

(T + Ta) = Ta(Th) = a(T2) =~ O(*BLEN), when 0 < Ty, Ty € £

A o0 log A
More precisely, using previous results, one get

Lemma 2.7.

‘T)\(Tl + Tg) — T)\(Tl) — T)\(Tg) | < (lmg2(21—g;—o§10g)\)) HTI + TQHLOO, when Tl,TQ € ﬁioo

Proof. By the sub-additivity of o, 7a(T1 +12) < 7\(T1) + 72 (T%) and thanks to (14), we get
O'p(Tl) + O'p(Tl) S Uzp(Tl + Tg) Thus

A 2
1 a2,(T1+T2) dp 1 ap(T1+T2) dp
TA(TI) + TA(TQ) < log A /e log p p < log A % log p/2  p
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Hence, (log A\) | 7a(T1 + Ty) — 7a(T1) — a(T) | < € + € with

o / oo(Ti+Ts) dp /” oo (T1+Ts) dp
log p 9 logp/2 o
¢ = % UP(TI + T2)<10g /2 10;p) %'
By triangular inequality and the fact that o,(T1 + T2) <logp [Ty + T3, o, when p > e,
e [ [Tty
ST+ Tl ([ 4 [ %) < 21082 T3 + T

Moreover,

/ 2 1 1 dp 22 log2 dp
¢ < |7+ Dol /2 log p (7 — iogs) B < ITa+ Tl o /2 Tog /2 »
< ||Th + T3, o, log(2) log (log A). O

The Dixmier’s idea was to force additivity: since the map A — 7,(7) is in Cy([e, o0]) and
A — (w%—oflogA)) is in Cy([e, 00[), let us consider the C*-algebra

A= Cy([e, 00])/ Co([e, o0]).

If [7(7)] is the class of the map A — 7,(T") in A, previous lemma shows that [7] : T — [7(T)]
is additive and positive homogeneous from £ into A satisfying [r(UTU*)] = [r(T)] for
any unitary U.

Now let w be a state on .4, namely a positive linear form on A with w(1) = 1.

Then, w o [7(-)] is a tracial weight on £ (a map from £1™ to Rt which is additive,
homogeneous and invariant under T — UTU*). Since £ is a C*-ideal of B(H), each of
its element is generated by (at most) four positive elements, and this map can be extended
toamap wo [r(1)] : T € LY — w([7(T)]) € C such that w([r(T1T2)]) = w([7(TyT1)]) for
Ty, T, € LY. This leads to the following

Definition 2.8. The Dizmier trace Tr,, associated to a state w on A := Cy([e, 00])/Co([e, ool)
is
Tr, () == wo [7(4)].

Theorem 2.9. Tr, is a trace on LY which depends only on the locally convex topology of
H, not of its scalar product.

Proof. We already know that Tr, is a trace.

If (-, )’ is another scalar product on H giving the same topology as (-, -), then there exist an
invertible U € B(H) with (-,-) = (U-,U-). Let H' be the Hilbert space for (-,-)" and Tr/, be
the associated Dixmier trace to a given state w. Since the singular value of U™'TU € K, (H')
are the same of T € K (H), we get LV>®(H') = L1*°(H) and

T (T) = Tr,(U™'TU) = Tr,(T) for T € L£L™. O

w
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Two important points:

1) Note that Tr,(T) = 0 if T € £L'(H) and more generally all Dixmier traces vanish on
the closure for the norm ||.||, ., of the ideal of finite rank operators. In particular, Dixmier
traces are not normal.

2) The C*-algebra A is not separable, so it is impossible to exhibit any state w! Despite
the inclusions and the fact that the £P(H) are separable ideals for p > 1, £5* is not a
separable.

Moreover, as for Lebesgue integral, there are sets which are not measurable. For instance, a
function f € Cy([e, o0]) has a limit £ = lim) . f(A) if and only if £ = w(f) for all state w.

Definition 2.10. The operator T € LY is said to be measurable if Tr,,(T) is independent
of w. In this case, Tr,, is denoted Trp;,.

Lemma 2.11. The operator T € LY is measurable and Tr,(T) = € if and only if the map
A€ RT — 1\(T) € A converges at infinity to £.

Proof. 1f lim, o, 7A(T) = ¢, then Tr,(T) = w(T(T)) =w(l) =Lw(l) ="

Conversely, assume 7' is measurable and ¢ = Tr,(7) for any state w. Then we get,
w(T(T) — Z) = Tr,(T) — ¢ = 0. Since the set of states separate the points of A, 7(T') = ¢
and lim, _,, 7,(7T") = ¢. O

After Dixmier, the singular (i.e. non normal) traces have been deeply investigated, see
for instance the recent [73,[75,/76], but we do not enter into this framework and technically,
we just make the following characterization of measurability:

Remark 2.12. If T € K, (H), then T is measurable if and only if limy_, log#N SN i (T)
exists.

Actually, if ¢ = limy_,o ﬁ SN o i (T) since Tr, (T') = ¢ for any w, so Trp;, = £ and the
converse is proved in [74].

Example 2.13. Computation of the Dizmier trace of the inverse Laplacian on the torus:

Let T¢ = R?/27Z% be the d-dimensional torus and A = — Y% | 9% be the scalar Laplacian
seen as unbounded operator on H = L?(T¢). We want to compute Tr, ((1 + A)_p> for
g < p e N*". We use 1 + A to avoid the kernel problem with the inverse. As the following
proof shows, 1 can be replaced by any € > 0 and the result does not depends on e.

Notice that the functions eg(z) := o= e*® with x € T?, k € Z? = (T?)* form a basis of H

27
of eigenvectors: A ey, = |k|? e,. Moreover, for ¢t € R*,

ot Ty (eft(lJrA)) =S o tkZ — (Z efth)d'

kezd keZ
We know that | [ e " dz — Y4z e ™| < 1, and since the first integral is T, we get
d/2
t —t(1+A)\ ~ (=T . —d/2
eTr(e >t¢3+ (t> = at Y=
We will use a Tauberian theorem: ,un((l + A)_d/Q)) ~ (« m) L see [55] (one needs

n—o0

to estimates the cardinality of the set { k € Z?||k|?> < n}, see [50]). Thus

N
: 1 —d/2\ _ o _ g2
N Tog N ;}“ "((1 +a) ) ~ T(@2+1) — Td2+1)
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Thus (1 + A)~%? is measurable and

_ _ £d/2
Trpie (14 A)72)) = Tr, (14 A)™2)) = 520,
Since (14 A)~ is traceable for p > 4, Trp,, ((1 + A)*p) = 0.
This result has been generalized in Connes’ trace theorem [24]:

Theorem 2.14. Let M be a compact Riemannian manifold of dimension d, E a vector
bundle over M and P € WDO~%(M, E). Then, P € LY*°, is measurable and

Trpis(P) = & WRes(P).

Proof. Since WRes and Trp;, are traces on WDO~™(M, E), m € N, Trp;, = ¢ WRes for some
constant ¢ using Corollary [1.23] Above example, when compare with Example [1.24] shows

that the ¢ = . 0
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3 Dirac operator

There are several ways to define a Dirac-like operator. The best one is to define Clifford
algebras, their representations, the notion of Clifford modules, spin® structures on orientable
manifolds M defined by Morita equivalence between the C*-algebras C(M) and I'(C{ M)
(this approach is more of the spirit of noncommutative geometry). Then the notion of spin
structure and finally, with the notion of spin and Clifford connection, we reach the definition
of a (generalized) Dirac operator.
Here we try to bypass this approach to save time.

References: a classical book is [71], but I recommend [47]. Here, we follow [88], but see
also [50].

3.1 Definition and main properties

Let (M, g) be a compact Riemannian manifold with metric g, of dimension d and E be a
vector bundle over M. An example is the (Clifford) bundle E = C¢T*M where the fiber
CULT;M is the Clifford algebra of the real vector space T)M for x € M endowed with the
nondegenerate quadratic form g.

Given a connection V on F, recall that a differential operator P of order m on E is an
element of

Diff™ (M, E) := T (M, End(E)) - Vect{ Vx, -+ Vx, | X; € '(M,TM), j <m}.

In particular, Diff™ (M, E) is a subalgebra of End(F(M, E)) and the operator P has a prin-
cipal symbol of in F(T*M , 7r*End(E)> where w : T*M — M is the canonical submersion

and ol (z,€) is given by ({).
An example: Let E = ANT*M. The exterior product and the contraction given on w,w; €
E by

e(w1) wa 1= wy A wy,
Lw) (Wi A Awm) =D (=1 glw,w))wi A ADFA - Aw,
j=1
suggest the following definition ¢(w) := €(w) + ¢(w) and one checks that
c(wr) c(wg) + c(wa)c(wr) = 2g(wr, ws) idg. (17)

E has a natural scalar product: if ey, --- , €4 is an orthonormal basis of 7y M, then the scalar
product is chosen such that e; A---Ae;, fori; <--- <i, is an orthonormal basis.

If d € Diff! is the exterior derivative and d* is its adjoint for the deduced scalar product on
['(M, E), then their principal symbols are

of(w) = ie(w), (18)

ol (w) = —it(w). (19)
This follows from o{(z,&) = lim;_,o %(e‘“h(”g)de“h(’”>(x) = limy oot it dsh = id,h = i€
where h is such that d,h = &, so 0¢(z, &) = i € and similarly for o¢ .
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More generally, if P € Diff™ (M), of(dh) = =L (adh)™(P) with adh = [-,h] and

imm!
P

ol (w) = oF (w)* where the adjoint P* is for the scalar product on I'(M, E) associated to

an hermitean metric on E: (¢, ¢') := [,(¢(z),¢'(x)), |dx| is a scalar product on the space
T(M, E).

Definition 3.1. The operator P € Dz’ﬁQ(M, E) is called a generalized Laplacian when its
symbol satisfies o8 (x,&) = |£2 idg, for x € M, & € TiM (note that |¢|, depends on the
metric g).

This is equivalent to say that, in local coordinates, P = — 3, ; 9 (2)0,:0, + V()05 + ()
where the &’ are smooth and ¢ is in F(M, End(E))

Definition 3.2. Assume that E = E* @& E~ is a Zo-graded vector bundle.
When D € Diff (M, E) and D = ( - 2" ) (D is odd) where D* : T(M, E¥) — T(M, E¥),

D is called a Dirac operator if D* = (D70D+ D+0D,) is a generalized Laplacian.

A good example is given by E = AT*M = A" T*M & A\°* T*M and the de Rham operator
D :=d+d*. It is a Dirac operator since D? = dd* + d*d is a generalized Laplacian according
to . D? is also called the Laplace-Beltrami operator.

Definition 3.3. Define C{ M as the vector bundle over M whose fiber in x € M is the
Clifford algebra CL T M (or CL T, M using the musical isomorphism X € TM «+ X" € T*M ).

A bundle E is called a Clifford bundle over M when there exists a Zs-graduate action
c: T(M,Ct M) — End(T'(M, E)).

The main idea which drives this definition is that Clifford actions correspond to principal
symbols of Dirac operators:

Proposition 3.4. If E is a Clifford module, every odd D € Diff* such that [D, f] = ic(df)
for f € C>®(M) is a Dirac operator.
Conversely, if D is a Dirac operator, there exists a Clifford action ¢ with c(df) = —i[D, f].

Proof. Let x € M, £ € TXM and f € C*(M) such that d,f = £. Then
ol (df) (@) = (+ad f)D = =i[D, f] = c(df),

so, thanks to Theorem , oD (x,6) = (o*lD(:U,S))2 = |¢|? idg, and D? is a generalized
Laplacian.

Conversely, if D is a Dirac operator, then we can define ¢(df) := i[D, f]. This makes
sense since D € Diff! and for f € C®°(M), x € M, [D, fl(z) = iol(df)(z) = iol (z,d.f) is
an endomorphism of F, depending only on d,f. So ¢ can be extended to the whole T M
with c(xz,€) = c(dh)(z) = ioP(x,€) where h € C*(M) is chosen such that & = d,h. The
map & — ¢z, €) is linear from T*M to End(E,) and c(z,£)? = oP(z,€)? = 0P’ (x,€) = |£]?
for each £ € TyM. Thus ¢ can be extended to an morphism of algebras from C¢(T M) in
End(E,). This gives a Clifford action on the bundle E. O

Consider previous example: E = AT*M = A" T*M & N\ T*M is a Clifford module for
¢ :=i(e 4 ¢) coming from the Dirac operator D = d + d*: by and

i[D, f] = ild +d*, f] = i(iof(df) — iof (df)) = —i(e + 0)(df).
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Definition 3.5. Let E be a Clifford module over M. A connection V on E is a Clifford
connection if for a € T(M,C¢M) and X € T(M,TM), [Vx,c(a)] = (VL a) where VL is
the Levi-Civita connection after its extension to the bundle CL M (here CC M is the bundle
with fiber CLT, M ).

A Dirac operator Dy is associated to a Clifford connection V in the following way:
Dy :=—icoV, D(M,E)%T(MTM®E) 25 T(M,E).
(we will use ¢ for c®1).

Thus if in local coordinates, V = Z?Zl dr’ @ V;,, the associated Dirac operator is given
by Dy = =iy ¢(da?) V,. In particular, for f € C®(M),

[Dv, fidg] = —iZc(dx ) [Va,, Zd: c(dz?) 0; f = —ic(df).

By Proposition Dy deserves the name of Dirac operator!

Ezxamples:

1) For the previous example £ = AT*M, the Levi-Civita connection is indeed a Clifford
connection whose associated Dirac operator coincides with the de Rham operator D = d+d*.

2) The spinor bundle: Recall that the spin group Spin, is the non-trivial two-fold covering
of SOy, so we have

0 — Zy — Spin, — SO; — 1.

Let SO(T'M) — M be the SOg4-principal bundle of positively oriented orthonormal frames
on T'M of an oriented Riemannian manifold M of dimension d.

A spin structure on an oriented d-dimensional Riemannian manifold (M, g) is a Spin,-
principal bundle Spin(TM) -~ M with a two-fold covering map Spin(TM) —= SO(T M)
such that the following diagram commutes:

Spin(T'M) x Sping ——— Spin(T'M) _
| A
nx€ 1 M

SO(TM) x SO, so(rM)” ~

where the horizontal maps are the actions of Spin; and SO, on the principal fiber bundles
Spin(T'M) and SO(TM).

A spin manifold is an oriented Riemannian manifold admitting a spin structure.
In above definition, one can replace Spin, by the group Spinj; which is a central extension of
SOy by T:

0 — T — Spin§ — SO, —> 1.

An oriented Riemannian manifold (M, g) is spin if and only if the second Stiefel-Whitney
class of its tangent bundle vanishes. Thus a manifold is spin if and only both its first and
second Stiefel-Whitney classes vanish (the vanishing of the first one being equivalent to the
orientability of the manifold). In this case, the set of spin structures on (M, g) stands in
one-to-one correspondence with H'(M,Z,). In particular the existence of a spin structure
does not depend on the metric or the orientation of a given manifold. Note that all manifolds
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of dimension d < 4 have spin® structures but CP? is a 4-dimensional (complex) manifold
without spin structures.

Let p be an irreducible representation of C¢C? — Endg(X,) with £y ~ C2** as set of
complex spinors. Of course, C/ C? is endowed with its canonical complex bilinear form.

The spinor bundle S of M is the complex vector bundle associated to the principal bundle
Spin(T'M) with the spinor representation, namely S := Spin(T'M) x,, 34. Here p; is a
representation of Spin, on Aut(3,;) which is the restriction of p.

More precisely, if d = 2m is even, pg = p™+p~ where p* are two nonequivalent irreducible
complex representations of Spin,,, and ¥, = X3, @ X5,,, while for d = 2m + 1 odd, the
spinor representation py is irreducible.

In practice, M is a spin manifold means that there exists a Clifford bundle S = S* & S~
such that S ~ AT*M. Due to the dimension of M, the Clifford bundle has fiber

Mym(C) when d = 2m is even,

ngM - { Mgm (C) ) Mgm (C) When d = 2m + 1.

Locally, the spinor bundle satisfies S ~ M x C%?2,
A spin connection V5 : T°°(M,S) — T°°(M,S) ® I'*°(M, T*M) is any connection which is
compatible with Clifford action:

(V2 e()] = e(VE).

It is uniquely determined by the choice of a spin structure on M (once an orientation of M
is chosen).

Definition 3.6. The Dirac (also called Atiyah—Singer) operator given by the spin structure
18

D= —icoV?. (20)
In coordinates,

D = —ic(da?)(0; — w;(x)) (21)

where w; is the spin connection part which can be computed in the coordinate basis

wj = i(F?. Gt — Gi(h?)éaghlﬁ)c(dxi) c(dzh)

7

where the matrix H := [h§] is such that H'H = [g;] (we use Latin letters for coordinate
basis indices and Greek letters for orthonormal basis indices).
This gives o (z, &) = ¢(§) + ic(da? ) wj(z). Thus in normal coordinates around o,

c(dz’)(zo) =7,
oy (w0, €) = () =7'¢;

where the v’s are constant hermitean matrices.
A fundamental result concerning a Dirac operator (definition [3.2)) is its unique continua-
tion property: if ¢ satisfies Dy = 0 and 1) vanishes on an open subset of the smooth manifold
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M (with or without boundary), then v also vanishes on the whole connected component of
M.
The Hilbert space of spinors is

H = L2((M.9).8)) = {¥ e T*(MLS)| [ (), dvol,(x) < o0} (22)

where we have a scalar product which is C*°(M)-valued. On its domain I'**(M, S), the Dirac
operator is symmetric: (¢, Do) = (D), ). Moreover, it has a selfadjoint closure (which is

7

Theorem 3.7. Let (M, g) be an oriented compact Riemannian spin manifold without bound-
ary. By extension to H, P is essentially selfadjoint on its original domain I'*°(M,S). It is
a differential (unbounded) operator of order one which is elliptic.

See [50,/71,106,107] for a proof.
There is a nice formula which relates the Dirac operator I) to the spinor Laplacian

A% = —Tr, (V5o V®): I°(M,S) — I'™(M,S).

Before to give it, we need to fix few notations: let R € I'*® (M, NTM ® End(TM)) be

the Riemann curvature tensor with components R,y = g(0;, R(0k, 0,)0;), the Ricci tensor
components are Ij = g““kal and the scalar curvature is s := gﬂRﬂ.

Proposition 3.8. Schridinger—Lichnerowicz formula: with same hypothestis,
PP =A%+ 1s (23)

where s is the scalar curvature of M.

The proof is just a lengthy computation (see for instance [50]).

We already know via Theorems and that @71 is compact so has a discrete spectrum.
For T' € K, (H), we denote by {\,(T') }nen its spectrum sorted in decreasing order including
multiplicity (and in increasing order for an unbounded positive operator 7" such that T is
compact) and by Np(\) := #{ A, (T) | A, < A} its counting function.

Theorem 3.9. With same hypothesis, the asymptotics of the Dirac operator counting func-
tion is Nip|(A) ~_ 25T Vol(M) A where Vol(M) =, dvol.
Proof. By Weyl’s theorem, we know the asymptotics of Na(\) for the the scalar Laplacian
A= —Tr, (VT*M@)T*M o VT*M) which in coordinates is A = —g%(9;9; — I'};0;). It is given
by:

’ Na(\) ~ YICUD ol (A1) A2,

Asoo  A2m)

For the spinor Laplacian, we get the same formula with an extra factor of Tr(1g) = 2¢ and
Proposition (3.8 shows that Np2(A) has the same asymptotics than Na()) since s gives rise
to a bounded operator. O

We already encounter such computation in Example
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3.2 Dirac operators and change of metrics

Recall that the spinor bundle S, and square integrable spinors H, defined in depends
on the chosen metric g, so we note M, instead of M and H, := L*(M,, S,) and a natural
question is: what happens to a Dirac operator when the metric changes?

Let ¢’ be another Riemannian metric on M. Since the space of d-forms is one-dimensional,
there exists a positive function f, , : M — R™ such that dvoly = f, ,dvol,.

Let I, ,(z) : S, — S, the natural injection on the spinors spaces above point + € M which
is a pointwise linear isometry: |I, ,(z)¢(z)|y = |¢(x)],. Let us first see its construction:
there always exists a g-symmetric automorphism H, , of the 214/2]_ dimensional vector space
TM such that ¢'(X,Y) = g(H, ¢ X,Y) for X, Y € TM so define ¢, 4 X := H;;/2 X. Note
that 14, commutes with right action of the orthogonal group O, and can be lifted up to a
diffeomorphism Ping-equivariant on the spin structures associated to g and ¢’ and this lift
is denoted by I, (see [6]). This isometry is extended as operator on the Hilbert spaces
I,y Hy = Hy with (I g ¥)(x) =1, 4 (x) ().

Now define

Ugg =\ Tog gy : Hy = Hy. (24)

Then by construction, Uy , is a unitary operator from H, onto H,: for ¢/ € Hy,

Uyt Uy, = | gt 2dvoly = [ 1Ly g2 frgdvoly = [ 10/[% dvol,y
= <¢g’7¢g’>7-lgw

So we can realize Dg, as an operator Dy acting on H, with
. . -1
Dg/ . Hg — Hg, Dg/ = Ug7g/ lpg/ Ug7g/. (25)

This is an unbounded operator on H, which has the same eigenvalues as ng,.

In the same vein, the k-th Sobolev space H*(M,, S,) (which is the completion of the space
[°°(M,, S;) under the norm [[¢[|; = YF_ [y, [V (x)|? dz; be careful, V applied to Vi is
the tensor product connection on 7" M, ® S, etc, see Theorem can be transported: the
map U, , : H*(M,,S,) — H*(M,,S,) is an isomorphism, see [98]. In particular, (after the
transport map U), the domain of D, and ) o are the same.

A nice example of this situation is when ¢’ is in the conformal class of ¢ where we can
compute explicitly ng, and Dy [2,6,47,57].

Theorem 3.10. Let ¢ = e?"g be a conformal transformation of g with h € C°°(M,R). Then
there exists an isometry I, o between the spinor bundle S, and Sy such that

Dylogth= e " Iy (ng v — Z% cq(grad h) ¢)7

d+1 d—1
_ ——5h -1 —F5h
lpg’ =€ 2 Ig:g/ wg Ig,g’ e 2 9

Dy =e 2] e 2
g

for i € I'°(M,S,).
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Proof. The isometry X — X' := e "X from (T'M, g) onto (T'M, g') defines a principal bundle
isomorphism SO, (T'M) — SO, (T M) lifting to the spin level. More precisely, it induces a
vector-bundle isomorphism I, , : S; — Sy, preserving the pointwise hermitean inner product

(1e Hg’gl = €2h), SUC/}Lthat €7h Cg/ (X) Ig,g’ @Z) = Cg ( ) 9,9 ¢ ggl Cg(X)¢
For a connection V compatible with a metric k£ and without torsion, we have for X,Y, Z

in T°°(T'M)
W(VxY,Z) = k([X,Y],Z) + k([Z,Y],X) + k([Z,X],Y)
+ X k(Y Z)+Y - k(X,Z) - Z-k(X,Y) (26)

which is obtained Via k(VxY,Z)+k(Y,VxZ) = X - k(Y, Z) minus two cyclic permutations.
The set {e} := e fe;|1 < j < d} is alocal g-orthonormal basis of TU for ¢ if and only
if {e;} is a 1oca1 g- orthonormal basis of TU where U is a trivializing open subset of M.

Applying (26) to V'*“, we get
2/ <V'”ez, ) = Mg, b ) (e e el X) + Myl ey X b
+ X -eMgle e ee) + e e - g X, e ey) — e ey ePg(X, e ey)
=29(V&ei e;) +2(e; - h) gle;, X) — 2(e; - h) gles, X).

Since Vig U =—19(VEe;, ¢;) cyle;) cylej) ¥, for ¢ € T=(U, S,),

o PRRIES [ 9+ 2cq(ex) cq(grad h) — %ek(h)} Y. (27)
Hence
Dy lyg = —icy(e)V, Ly th = —ie™ ey () Vel Ty ¥
= —ie ™" ey (e Ipg [VEr + L egler) colgrad h) — Lex(h)] v
= —ie ™" I, g cqler) [V + L egen) colgrad h) — Sex(h)| v
= e M Iy [P, — 1% ¢g(grad )] v,

So, using [, , f] = —icy(grad f) for f = e” 2 !

d—1

Dg’ e 2" lyg ¥ = e I [lpg e” 2 "y Z% e 2" cq(grad h) @b}
d—1 d—1 d
=" Ly[e T Pyt [Py e T g —itsteT 2 " ey(grad h) Y]

241
Thus D, = e~ 0g Py 1 gg/ e o " and since dvoly = e dvol,, using

@g’ — ¢ h/2 U;/,lg lpg Uy o h/2
Finally, ([25)) yields D, = e /2 g e 2, ]
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Note that Dy is not a Dirac operator as defined in since its principal symbol has an
z-dependence: 0P (z,&) = e @ ¢, (€).
The principal symbols of ), and D, are related by

:lt lpg —h(x *
P9 (@,6) = e MDY () 00 9 (2,€) Uy o) e @2 ¢ e TPM

Thus
cy (&) = e "IULL () ¢g(€) Uy y(z), € € TEM. (28)

Using c4(&)cg(n) + cg(n)cg(§) = 29(€,n) idg,, formula gives a verification of the formula
g'(&n) =e*g(&n).

Note that two volume forms p, i/ on a compact connected manifold M are related by
an orientation preserving diffeomorphism « of M in the following sense [81]: there exists
a constant ¢ = ([y, /)" [y o such that u = ¢ o*)/ where o/ is the pull-back of /' (i.e.
Jasy @1 = [g p for any set S C M ). The proof is based on the construction of an orientation
preserving automorphism homotopic to the identity.

It is also natural to look at the changes on a Dirac operator when the metric ¢ is modified
by a diffeomorphism « which preserves the spin structure. The diffeomorphism « can be lifted
to a diffeomorphism Og-equivariant on the Og4-principal bundle of g-orthonormal frames with
o= H,. g/ , T'a, and this lift also exists on S, when a preserves both the orientation and the
spin structure. However, the last lift is deﬁned up to a Zs-action which disappears if « is
connected to the identity.

The pull-back ¢’ := a*g of the metric g is defined by (a*¢).(£,1) = ga@) (:(§), aun),
xr € M, where o is the push-forward map : T, M — T}, ,)M. Of course, the metric ¢’ and g
are different but the geodesic distances are the same. Let us check that dy = a*d:

In local coordinates, we note 9, := 9/0z* and 9, = 0/0(a(z))*. Thus &' = (A7)0
where A* , := O(a(z))" /0z*. The dependence in the metric g of Cristoffel symbols is
re, = 297 (8,980 + Ov9us — O39,w). Thus the same symbols I" associated to ¢’ are

F,/f//,/ = Ap, p(A_lT)u’ M(A_IT)V’ Y Fﬁy + Ap, p(A_1T>M’ g au (A_IT)V’ v (29)

The geodesic equation is & +1" i i = 0 for all p (note that neither z* nor #* are 4-vectors
in the sense that they are not transformed like v/# = A# x v*, while ## is a 4-vector; in fact
oz(x) /= A, §P + 9, " iP. This relation and give the invariance of the geodesic
equation and the same for the distance since for any path « joining points = = v(0), y = (1)

/ \/a 9) (t) dt / \/gaov(t aoq/ (t),(ozoy)’(t)) dt

and (o 7)(0) = a(x), (@0 v)(1) = a(y). Note that a is an isometry only if a*d, = d,.

Recall that the principal symbol of a Dirac operator D is o2 (z,£) = ¢,(€) so gives the
metric g by as we checked above. This information will be used later in the definition
of a spectral triple. A commutative spectral triple associated to a manifold generates the
so-called Connes’ distance which is nothing else but the metric distance; see the remark after
. Again, the link between d,+, and d, is explained by , since the unitary induces an
automorphism of the C*-algebra C*°(M).
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4 Heat kernel expansion

References for this section: [4,44,45] and especially [109)].

Recall that the heat kernel is a Green function of the heat operator e!® (recall that —A is
a positive operator) which measures the temperature evolution in a domain whose boundary
has a given temperature. For instance, the heat kernel of the Euclidean space R? is

k(x,y) = (4,,t1)d/26 le=y?/4 for o + 1y (30)

and it solves the heat equation

atkt($ay) :Aa:kt<x>y)v vt > 07 ZL‘,yGRd
initial condition: limy o ki(x,y) = d(x — y).

Actually, ky(z,y) = 5= [ % e~ts* ¢i5(==v) s when d = 1.

Note that for f € D(RY), we have limy [ga kt(z,y) f(y) dy = f(z).

For a connected domain (or manifold with boundary with vector bundle V') U, let A, be the
eigenvalues for the Dirichlet problem of minus the Laplacian

—Ap=Xp in U
=0 on OU.

If v, € L*(U) are the normalized eigenfunctions, the inverse Dirichlet Laplacian A™! is a
selfadjoint compact operator, 0 < A\; < Ay < A3 < -+ A\, — 0.

The interest for the heat kernel is that, if f(z) = [3° dte ™ ¢(x) is the Laplace transform
of ¢, then Tr ( f (—A)) = [oodto(t) Tr (em) (if everything makes sense) is controlled by

Tr (etA> = [y dvol(x) try, ki(x, x) since Tr (etA) =% e and

o0

ki(z,y) = (z, e y) = D (2, 0m) W, € 20n) (U0, y) Z V() P (y) .

n,m=1 n,m=1

So it is useful to know the asymptotics of the heat kernel k; on the diagonal of M x M
especially near ¢t = 0.

4.1 The asymptotics of heat kernel

Let now M be a smooth compact Riemannian manifold without boundary, V' be a vector
bundle over M and P € WDO™(M,V) be a positive elliptic operator of order m > 0. If
ki(x,y) is the kernel of the heat operator e=*F then the following asymptotics exits on the

diagonal:

ky(x,x) ~ Z ag(z) f(—dtk)/m
A
which means that

’k’t(x,x) - > ak(x)t(_‘“k)/m‘ <cpt"for0<t<1
k<k(n) oo
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where |floon = SUPzerr Djaj<n |05 f] (since P is elliptic, k;(z,y) is a smooth function of
(t,x,y) for t > 0, see [44, section 1.6, 1.7]).
More generally, we will use

k(t, f,P) :=Tr (f e’tp)

where f is a smooth function. We have similarly

o0

k(t, f,P) ~ > ag(f,P)t-dhim, (31)

+
HO™ 120

The utility of function f will appear later for the computation of coefficients ay,.
The following points are of importance:

1) The existence of this asymptotics is non-trivial [44,45].

2) The coefficients aqi(f, P) can be computed locally as integral of local invariants:
Recall that a locally computable quantity is the integral on the manifold of a local frame-
independent smooth function of one variable, depending only on a finite number of derivatives
of a finite number of terms in the asymptotic expansion of the total symbol of P.

In noncommutative geometry, local generally means that it is concentrated at infinity in
momentum space.

3) The odd coefficients are zero: agxi1(f, P) = 0.

For instance, let us assume from now on that P is a Laplace type operator of the form

P =—(¢"8,0, + A", + B) (32)

where (¢")1<uv<a is the inverse matrix associated to the metric g on M, and A* and B are
smooth L(V)-sections on M (endomorphisms) (see also Definition[3.1)). Then (see [45, Lemma
1.2.1]) there is a unique connection V on V' and a unique endomorphism E such that

P = —(Tr, Vi+E), VA(X,Y):=[Vx,Vy] - va(cyj
X,Y are vector fields on M and V¢ is the Levi-Civita connection on M. Locally
Tr, V? := ¢"(V,V, - 1% ,V,)

where [, are the Christoffel coefficients of VLC. Moreover (with local frames of T*M and
V), V=dz* ® (0, +w,) and E are related to g, A* and B through

w, = %gm(A“ + g7 Tk, idy), (33)
E=B - g" (0w, +ww, —wl},). (34)

In this case, the coefficients a(f, P) = [y, dvol, trg (f(x) ar(P) (35)) and the a;,(P) = ¢; aj(P)
are linear combination with constants ¢; of all possible independent invariants o} (P) of di-
mension k constructed from F, Q, R and their derivatives (€2 is the curvature of the connection
w, and R is the Riemann curvature tensor). As an example, for k = 2, E and s are the only
independent invariants.

Point 3) follow since there is no odd-dimension invariant.
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4.2 Computations of heat kernel coefficients

The computation of coefficients ay( f, P) is made by induction using first a variational method:
for any smooth functions f, h on has

%‘EZO ak(17€_2€fp) = (d_ k) ak(fa P)a (35)
%\5:0 ak(l’ P — Eh) = a’k—Q(ha P)a (36)
%\e:(} ag_s(e > h, eI P) = 0. (37)

The first equation follows from

%\ezo Tr (eie_%f tp) =24 Ty (f €7tp)

with an expansion in power series in t. Same method for .
For the proof of (37), we use P(e,d) := e 2/(P — 6h); with for k =d,

0= 42 :0 ad(l,P(e, 5)),

de e

thus after a variation of ¢,
_ d d d
0= & 5=0 defe=0 @ (1 P(e, 5>> de\e 0 d5jo=0 ¢ (LP(E’(S))’

we derive from .
The idea behind equations , and is that shows dependence of coefficients

ap on F, while the two others describe their behaviors under local scale transformations.

Then, the a,(P) = ¢; a(P) are computed with arbitrary constants ¢; (they are dependent
only of the dimension d) and these constants are inductively calculated using , and
. If s is the scalar curvature and ‘;” denote multiple covariant derivative with respect to
Levi-Civita connection on M, one finds, with rescaled a’s,

ao(f, P) = (4m) ™" | dvol, trv(aof)
as(f, P) = M/ dvol, try [(f(alE + 0628)}, (38)

as(f, P) = 47260 / dvol, try [f(CYgE ke + auBs + asE? 4+ ag Ry + a7’

+ agRijRij + g Rijri Rijra + OéloQijQij)]-
In a4, they are no other invariants: for instance, R;j,;; is proportional to ;.

Using the scalar Laplacian on the circle, one finds o = 1.
Using with £ = 2, under the change P — P — ¢h, E becomes F + ¢€h, so

L /M dvol, try (aih) = /M dvol, try (h)
yielding ay = 6. For k = 4, it gives now:

360/ dvoly try (ouhs 4+ 205hE) = / dvol, try (cnhE + ashs),
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thus a5 = 180 and a4y = 60as.
To go further, one considers the scale transformation on P given in and (37). In (35),
P is transformed covariantly, the metric ¢ is changed into e=2/¢g implying conformal trans-
formation of the Riemann tensor, Ricci tensor and scalar curvature giving the modifications
on w and F via (33)), . This gives (we collect here all terms appearing in ay and only few
terms appearing in ay)

%k:o dvol, = d f dvoly,

4 E=-2fE+1d-2)fu,

$|6:0
ikzos =—2fs—=2(d—1) fu,

d Es = —4fES+%(d—2)Sf;ii_2(d_ 1)f;iiE=

E|e:0
%k:o E? = —AfE* 4+ (d-2) fuF,
%k:O s = —4fs® —4(d — 1) fs,

%l'f:() Rijin = =2f Rijia + 0jfan + 0. St — OunS gk — Ojic S »
¢ Qi = —4F Q8

$|6:0

Applying with d = 4, we get

£ oae *he ) =0
Picking terms with [, dvol, try (hf.;), we find oy = 6aq, so as = 1 and oy = 60. Thus
as(f, P) has been determined.

Similar method gives a4(f, P), but only after lengthy computation despite the use of Gauss—
Bonnet theorem for the determination of ar1g! One finds:

3 = 60, 5 = 180, Qg = ]_2, Qry = 5, ag = —2, Qg = 2, 190 = 30.

The coefficient ag was computed by Gilkey, ag by Amsterdamski, Berkin and O’Connor
and ajp in 1998 by van de Ven |110]. Some higher coefficients are known in flat spaces.

4.3 Wodzicki residue and heat expansion

Wodzicki has proved that, in (1)), ax(P)(z) = & cpr-aym(z) is true not only for k = 0 as
seen in Theorem (where P <+ P~1), but for all k € N. In this section, we will prove this
result when P is is the inverse of a Dirac operator and this will be generalized in the next
section.

Let M be a compact Riemannian manifold of dimension d even, E a Clifford module over
M and D be the Dirac operator (definition given by a Clifford connection on E. By
Theorem D is a selfadjoint (unbounded) operator on H := L?(M, S).

We are going to use the heat operator e~ P since D? is related to the Laplacian via the
Schrodinger—Lichnerowicz formula and since the asymptotics of the heat kernel of this
Laplacian is known.
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For ¢ > 0, we have e *P* € £1: the result follows from the decomposition
eftDQ (1 + Dz)(d+1)/2 7tD2(1 + D2) (d+1)/2’
since (14 D?)~(@+1D/2 ¢ £1 and the function: A — (1 4 A2)(@+D/2e=1" js hounded.
Thus Tr (e *P*) = 52, e < o0,
Another argument is the following: (1 + D?)=%2 maps L*(M,S) into the Sobolev space

H*(M,S) (see Theorem and the injection H¥(M,S) — L*(M,S) is Hilbert-Schmidt
operator for k& > 1d T hus t — e P s a semigroup of Hilbert—Schmidt operators for ¢t > 0.

Moreover, the operator e~*P* has a smooth kernel since it is regularizing, see Remark [1.3 .
(or [71]) and the asymptotics of its kernel is (recall [30)):

—dg(z 4t
ki (z, t0+ 4ﬁtd/2\/@;k z,y) t) el @)/

where k; is a smooth section on £* ® E. Thus

Tr (7)) ~ 3 #0792 q;(D?) (39)

+
HOT 350

with for j € N,
{ aj(D?) = W T tr(kj(a:,:c))\/detgx |dz|,
agj41(D?) = 0.

The aim now is to compute WRes(D‘p) for 0 <p<d:
Theorem 4.1. D7 € VDO P(M, E) and

WRes(D’p) = %ad,p(Dz) = Ww /M tr(k(d_p)/g(x, :c)) dvoly(x).

Proof. Assume D is invertible, otherwise swap D for the invertible operator D + P where
P is the projection on the kernel of D. Since the kernel is finite dimensional, P has a finite
rank and generates a smoothing operator. By spectral theory,

/ tp/2 —tD t ldt OO) tp/2 e—tDQ t_ldt

D_p —

p/2)

The second integral is a smooth operator since the map z — [ P/2 e~ t=1dt is in the
Schwartz space S.

Define the first integral as D_? and choose € small enough such that for 0 < ¢ < e and x and
y close enough,

(d—p)/2
‘kt(xay> (47rt)d/2 Z t] det gxk (.’L’ y) dg(,y) /4t‘ < Ctp/Z —dg(z,y)? /4t_

Thus
I'(4) tr(kD;p(x, y)) = /OOO P/2 tr(kt(x, y)) Lt

(d—p)/2
:Vﬁftdf’; Z tr(k x,y) /t] (p=d)/2~do(w.9)*/4t 14

v o [t ar)
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For m integer and p > 0, we get after a change of variable ¢ — ¢!,

. - Polynomial in i + O(1) for m <0,
/ tme Ml dt = um/ et dt = ¢ —log p+ O(1) for m = 0,
0 He O(1) for m > 0.

Thus, the logarithmic behavior of I'(%) tr (k‘D;p (x, y)) comes from

Vdet gz
(47r)td/92 tr(lf(al—p)/2

—~

o) [

am)/? tf(k(d—m/z(flfyy)) (— log (dg(:c,y)2/4) + 0(1))
= m tr(’f(d—p)/z(% y)) ( —2log (dg(ac, y)) + (’)(1)).

7
@
&+
s
8

So
WRes((D’p) = WRes(D;p> = — [y cpre(2) |dz] = WIM tr(k(d,p)/g(x,x))\/det g |dx|,
which is, by definition, % aq—p(D?). O

Few remarks are in order:

1) If p = d, WRes(D—d) = o @0(D?) = 125 ﬁggf;f;) Vol(M).

Since Tr(e *"%) e ag(D?)t~%2, the Tauberian theorem used in Example [2.13| implies that
t

D~ = (D~%)4/2 is measurable and we obtain Connes’ trace theorem [2.14

— — a 2 —
Trpip (D) = Tr, (D7) = F(25123+)1) =1 WRes(D™9).

2) When D = P and E is the spinor bundle, the Seeley-deWit coefficient ay(D?) (see (38))

with f = 1) can be easily computed (see [44,/50]): if s is the scalar curvature,
@(D?) =~y | s(x) dvoly(a). (40)
So WRes(D_d+2) = W as(?) = ¢ [y 8(x) dvoly(z). This is a quite important result

since this last integral is nothing else but the Einstein-Hilbert action (70). In dimension 4,
this is an example of invariant by diffeomorphisms, see (13)).
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5 Noncommutative integration

We already saw that the Wodzicki residue is a trace and, as such, can be viewed as an integral.
But of course, it is quite natural to relate this integral to zeta functions used in ((11)): with
notations of Section [L.4] let P € WDO*(M, E) and D € WDO'(M, E) which is elliptic. The
definition of zeta function

¢h(s) = "Tx (P|D| )

has been useful to prove that WRes P = Rg()s CE(s) = — [y, cp(x) |dz).

The aim now is to extend this notion to noncommutative spaces encoded in the notion of
spectral triple.
References: [25}31}34,37,/50].

5.1 Notion of spectral triple

The main properties of a compact spin Riemannian manifold M can be recaptured using
the following triple (A = C*(M),H = L*(M, S), D). The coordinates x = (z!,--- ,z%) are
exchanged with the algebra C'°°(M), the Dirac operator D gives the dimension d as we saw
in Theorem [3.9, but also the metric of M via Connes formula and more generally generates
a quantized calculus. The idea of noncommutative geometry is to forget about the commu-
tativity of the algebra and to impose axioms on a triplet (A, H,D) to generalize the above
one in order to be able to obtain appropriate definitions of important notions: pseudodiffer-
ential operators, measure and integration theory, K O-theory, orientability, Poincaré duality,
Hochschild (co)homology etc.

An important remark, probably due to Atiyah, is that the commutator of a pseudodiffer-
ential operator of order 1 (resp. order 0) with the multiplication by a function is a bounded
operator (resp. compact). This is at the origin of the notion of Fredholm module (or K-cycle)
with its K-homology class and via duality to its K-theory culminating with the Kasparov KK-
theory. Thus, it is quite natural to define (unbounded) Fredholm module since for instance
D is unbounded:

Definition 5.1. A spectral triple (A, H, D) is the data of an involutive (unital) algebra A
with a faithful representation ™ on a Hilbert space H and a selfadjoint operator D with compact
resolvent (thus with discrete spectrum) such that [D,7(a)] is bounded for any a € A.

We could impose the existence of a C*-algebra A such that
A:={a€ A|[D,n(a)] is bounded }

is norm dense in A so A is a pre-C*-algebra stable by holomorphic calculus. Such A is always
a *-subalgebra of A.

When there is no confusion, we will write a instead of 7(a).
We now give useful definitions:

Definition 5.2. Let (A, H,D) be a spectral triple.
It is even if there is a grading operator x such that x = x*,

[x,m(a)] =0, Va € A and Dx = —xD.
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It is real of KO-dimension d € 7/8 if there is an antilinear isometry J : H — H such
that
JD =€eDJ, J?=¢€, Jx = €' xJ

with the following table for the signs €, €', €”

alo 1 2 38 4 5 6 7
Sl a T (4
e |1 -1 1 -1
and the following commutation rules
[w(a),x(0)°) =0,  [[D,m(a)],7(b)°] =0, Va,be A (42)

where m(a)° := Jmr(a*)J ™! is a representation of the opposite algebra A°.

It is d-summable (or has metric dimension d) if the singular values of D behave like
n(D) = OV,

It is regular if A and [D, A] are in the domain of 6™ for all n € N where

o(T) = [ID], T].

It satisfies the finiteness condition if the space of smooth vectors H™® := (N, Dom D* is a
finitely projective left A-module.

It satisfies the orientation condition if there is a Hochschild cycle ¢ € Z4( A, A® A°) such
that 7p(c) = x, where 7p((a ®b°) @ a1 @ -+ ® ag) := 7(a)7(b)°[D, w(a1)] - - - [D, 7(aq)] and
d is its metric dimension.

The above definition of K O-dimension comes from the fact that a Dirac operator is a
square root a Laplacian. This generates a sign problem which corresponds to a choice of a
spin structure (or orientation). Up to some subtleties, the choice of a manifold of a chosen
homotopy needs a Poincaré duality between homology and cohomology and the necessary
refinement yields to the KO-homology introduced by Atiyah and Singer.

An interesting example of noncommutative space of non-zero K O-dimension is given by
the finite part of the noncommutative standard model [21}2831].

Moreover, the reality (or charge conjugation in the commutative case) operator J is related
to the problem of the adjoint: If M is a von Neumann algebra acting on the Hilbert space H
with a cyclic and separating vector £ € H (which means M¢ is dense in H and a& = 0 implies
a = 0, for a € M), then the closure S of the map: a{ — a*¢ has an unbounded extension
to H with a polar decomposition S = JA? where A := S*S is a positive operator and J is
antilinear operator such that JMJ™! = M’  see Tomita theory in [103]. This explains the
commutation relations (42)). Moreover A*MA~# = M, a point related to Definition [5.5]

A fundamental point is that a reconstruction of the manifold is possible, starting only with
a spectral triple where the algebra is commutative (see [29] for a more precise formulation,
and also [94]):

Theorem 5.3. 29/ Given a commutative spectral triple (A, H, D) satisfying the above ax-
ioms, then there exists a compact spin® manifold M such that A ~ C*°(M) and D is a Dirac
operator.
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The manifold is known as a set, M = Sp(A) = Sp(A). Notice that D is known only via its
principal symbol, so is not unique. J encodes the nuance between spin and spin® structures.
The spectral action selects the Levi-Civita connection so the Dirac operator ).

The way, the operator D recaptures the original Riemannian metric g of M is via the
Connes’ distance:

Definition 5.4. Given a spectral triple (A, H, D),

d(¢1, ¢2) = sup{[¢1(a) — g2(a)| | I[D,w(a)]| < 1,0 € A} (43)
defines a distance (eventually infinite) between two states ¢y, ¢o on the C*-algebra A.

In a commutative geometry, any point x € M defines a state via ¢, : a € C*°(M) — a(z) € C.
Since the geodesic distance is also given by

dg(z,y) = sup{ |a(z) —a(y)| | « € CF(M), |[grad a||, <1},

we get d(z,y) = dy(z,y) because ||c(da)|| = ||grad al| .. Recall that g is uniquely determined
by its distance function by Myers—Steenrod theorem: if o : (M, g) — (M’',¢’) is a bijection
such that d (oz(x), oz(y)) = dy(x,y) for z,y € M, then g = o*¢'.

The role of D is non only to provide a metric by , but its homotopy class represents
the K-homology fundamental class of the noncommutative space A.

It is known that one cannot hear the shape of a drum since the knowledge of the spec-
trum of a Laplacian does not determine the metric of the manifold, even if its conformal
class is given [7]. But Theorem shows that one can hear the shape of a spinorial drum
(or better say, of a spectral triple) since the knowledge of the spectrum of the Dirac op-
erator and the volume form, via its cohomological content, is sufficient to recapture the
metric and spin structure. See however the more precise refinement made in [30]: for in-
stance, if (M, g) is a compact oriented smooth Riemannian manifold, the spectral triple
(LOO(M), LA(M,\NT*M), D) where D = d + d* is the signature operator (see example after
definition uniquely determines the manifold M.

5.2 Notion of pseudodifferential operators

Definition 5.5. Let (A, H, D) be a spectral triple.
Fort € R define the map F, : T € B(H) — elPITe="Pl and for « € R

OP":={T |t— F(T) € C’OO((R,B(’H)> } is the set of operators or order <0,
OP*:={T | T|D|™™ € OP"} is the set of operators of order < a.

Moreover, we set
o(T):= (D, T),  V(T):=[D*T].

For instance, C*(M) = OP° N L>*(M) and L*(M) is the von Neumann algebra gener-
ated by A = C>*(M).

Proposition 5.6. Assume that (A, H,D) is regular so A C OP° = 5 Dom §* C B(H).
Then, for any a, f € R,

OP*OP® c OP**, OP* c OP? ifa < B, &(OP*) C OP*, V(OP®)C OP°'!,
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As an example, let us compute the order of X = a |D|[D,b] D3: since the order of a is 0, of
|D] is 1, of [D,b] is 0 and of D73 is -3, we get X € OP~2.
Definition 5.7. Let (A, H,D) be a spectral triple and D(A) be the polynomial algebra gen-

erated by A, A°, D and |D].
Define the set of pseudodifferential operators as

U(A):={T |VNeN, 3P e D(A), Re OP " peN such that T = P|D| "+ R}

The idea behind this definition is that we want to work modulo the set OP~° of smoothing
operators. This explains the presence of the arbitrary N and R. In the commutative case
of a manifold M with spectral triple (C’OO(M), L*(M, E), D) where D € Diff (M, F), we get
the natural inclusion W (C(M)) C WDO(M, E).

The reader should be aware that Definition is not exactly the same as in [31}34,/50] since
it pays attention to the reality operator J when it is present.

5.3 Zeta-functions and dimension spectrum

Definition 5.8. For P € W*(A), we define the zeta-function associated to P (and D) by
Gh:seC—Tr(PD| ) (44)

which makes sense since for R(s) > 1, P|D|~* € L}(H).

The dimension spectrum of (A, H, D) is the set { poles of (5(s)| P € W*(A)}. It is said
simple if it contains poles of order at most one.

The noncommutative integral of P is defined by

P := Res E(s). (45)

In , we assume D invertible since otherwise, one can replace D by the invertible operator
D + P, P being the projection on KerD. This change does not modify the computation of
the integrals  which follow since f X = 0 when X is a trace-class operator.

The notion of dimension spectrum contains more informations than the usual dimension
even for a manifold as we will see in Proposition [5.34]

Remark 5.9. If Sp(A, H,D) denotes the set of all poles of the functions s — Tr (P|D|_s)
where P is any pseudodifferential operator, then, Sd(A,H,D) C Sp(A, H,D).

When Sp(A,H,D) =7Z, SA(A,H,D) = {n—k : k € Ny }: indeed, if P is a pseudodiffer-
ential operator in OP°, and q € N is such that ¢ > n, P|D|™* is in OP™®) s0 is trace-class
for s in a neighborhood of q; as a consequence, q cannot be a pole of s — Tr (P|D|*s).

Due to the little difference of behavior between scalar and nonscalar pseudodifferential
operators (i.e. when coefficients like [D,a], a € A appears in P of Definition [5.7)), it is
convenient to also introduce

Definition 5.10. Let Di(A) be the algebra generated by A, JAJ ™' and D, and ¥(A) be the
set of pseudodifferential operators constructed as before with D1(A) instead of D(A). Note
that W, (A) is subalgebra of V(A).

Remark that ¥;(A) does not necessarily contain operators such as |D|* where k € Z is
odd. This algebra is similar to the one defined in [13].
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5.4 One-forms and fluctuations of D

The unitary group U(A) of A gives rise to the automorphism «, : a € A = uau* € A.
This defines the inner automorphisms group Inn(A) which is a normal subgroup of the
automorphisms Aut(A) = {a € Aut(A)|a(A) C A}. For instance, in case of a gauge
theory, the algebra A = C* (M, Mn(C)) ~ C*°(M) ® M,(C) is typically used. Then,

Inn(A) is locally isomorphic to G = C* (M, PSU(n)). Since Aut(C“(M)) ~ Diff(M), we
get a complete parallel analogy between following two exact sequences:
1 — Inn(A) — Aut(A) —  Aut(A)/Inn(A) — 1,
1 — g — G xDiff(M) — Diff(M) — 1.

This justifies that the internal symmetries of physics have to be replaced by the inner auto-
morphisms.
We are looking for an equivalence relation between (A, #H,D) and (A',H',D') giving rise
to the same geometry. Of course, we could use unitary equivalence: there exists a unitary
U: H — H such that D' = UDU*, Un(a)U* = 71'(05(&)) for some a € Aut(A), and in the
even real case [U, x| = [U, J] = 0. But this is not useful since it does not change the metric
. So we need to vary not only D but the algebra and its representation.

The appropriate framework for inner fluctuations of a spectral triple (A, H,D) is Morita
equivalence that we describe now:

A is Morita equivalent to B if there is a finite projective right A-module £ such that
B ~ Ends(€). Thus B acts on H' = £ ®4 H and H' is endowed with scalar product
(ren,s®¢&) = (n,m(rls)§) where () is a pairing € x &€ — A that is A-linear in the second
variable and satisfies (r|s) = (s|r)*, (r|sa) = (r|s)a and (s|s) > 0 for 0 # s € £ (this can be
seen as a A-valued inner product).

A natural operator D’ associated to B and H' is a linear map D'(r ®@n) = r®@Dn+ (Vr)n
where V : &€ = £® 40} (A) is a linear map obeying to Leibniz rule V(ra) = (Vr)a+r®[D, d]
for r € £, a € A where we took the following

Definition 5.11. Let (A, H,D) be a spectral triple. The set of one-forms is defined as
Op(A) == span{adb | a,b€ A}, db:=[D,b].
It is a A-bimodule.

Such V is called a connection on £ and by a result of Cuntz—Quillen, only projective modules
admit (universal) connections (see [50][Proposition 8.3]). Since we want D’ selfadjoint, V
must be hermitean with respect to D which means: 7T< (r|Vs) — (Vr|s)) = [D, n(r|s)].

In particular, when £ = A (any algebra is Morita equivalent to itself) and A is regarded
as a right A-module, £ has a natural hermitean connection with respect to D given by
Adp : a € A— [D,a] € Q5(A) and using the Leibniz rule, any another hermitean connection
V must verify: Va = Adpa + Aa where A = A* € QL(A). So this process, which does not
change neither the algebra A nor the Hilbert space H, gives a natural hermitean fluctuation
of D:

D — Dy :=D+ Awith A= A" € Qp(A).

In conclusion, the Morita equivalent geometries for (A, H, D) keeping fixed A and H is an
affine space modelled on the selfadjoint part of Qx(A).

For instance, in commutative geometries, (2}, (COO(M)) ={c(da)|a € C®(M)}.
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When a reality operator J exists, we also want D4J = € JD4, so we choose
DX::D—i—;l, A=A+eJAJE, A= A" (46)

The next two results show that, with the same algebra A and Hilbert space H, a fluctu-
ation of D still give rise to a spectral triple (A, H,Dy) or (A, H,Dy).

Lemma 5.12. Let (A, H, D) be a spectral triple with a reality operator J and chirality x. If
A € QL is a one-form, the fluctuated Dirac operator D or Dy is an operator with compact
resolvent, and in particular its kernel is a finite dimensional space. This space is invariant
by J and x.

Proof. Let T be a bounded operator and let z be in the resolvent of D + T and z’ be in the
resolvent of D. Then

D+T—-2)'=D-)"1-(T+2 -2)(D+T-2)"".

Since (D — z')~! is compact by hypothesis and since the term in bracket is bounded, D + T
has a compact resolvent. Applying this to T' = A + eJAJ~!, D4 has a finite dimensional
kernel (see for instance [66, Theorem 6.29]).

Since according to the dimension, J? = %1, J commutes or anticommutes with y, x
commutes with the elements in the algebra A and Dy = —xD, see , we get Dax = —xDa
and DyJ = +JD, which gives the result. O

Note that U(.A) acts on D by D — D, = uDu* leaving invariant the spectrum of D. Since
D, = D+u[D,u*] and in a C*-algebra, any element a is a linear combination of at most four
unitaries, Definition is quite natural.

The inner automorphisms of a spectral triple correspond to inner fluctuation of the metric

defined by (43)).

One checks directly that a fluctuation of a fluctuation is a fluctuation and that the unitary
group U(A) is gauge compatible for the adjoint representation:

Lemma 5.13. Let (A, H,D) be a spectral triple (which is eventually real) and A € Qh(A),
A= A"
(i) If B Qp, (A) (or BeQ Z('A))’
Dp = D¢ (or Dy = Dgz) with C := A+ B.
(ii) Let w € U(A). Then U, := uJuJ " is a unitary of H such that
U.D;U," = Dm, where v, (A) == u[D, u*] + uvAu*.

Remark 5.14. To be an inner fluctuation is not a symmetric relation. It can append that
Dy =0 with D # 0.

Lemma 5.15. Let (A, D, H) be a spectral triple and X € V(A). Then

fr-fx

If the spectral triple is real, then, for X € W(A), JXJ ' € U(A) and

][JXJ—1 :][X* :][X.
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Proof. The first result follows from (for Rs large enough, so the operators are traceable)

Tr(X*[D|™*) = Tr ((ID]7*)X)") = Te([D[°X) = Te(X[D[ ).

The second result is due to the anti-linearity of J, Tr(JY J™') = Tr(Y), and J|D| = |D|J,
SO

Te(X|D|~*) = Te(JX[D|=#J 1) = Te(JX T-1D]-9). 0

Corollary 5.16. For any one-form A = A*, and for k, | € N,
][Al Dk R, ][ (4D er, ][Al D|* e R, ][XAl D|* e R, ][A’D D|* € R.

We remark that the fluctuations leave invariant the first term of the spectral action ([74)).
This is a generalization of the fact that in the commutative case, the noncommutative integral
depends only on the principal symbol of the Dirac operator D and this symbol is stable by
adding a gauge potential like in D + A. Note however that the symmetrized gauge potential
A+ eJAJ™1 is always zero in this case for any selfadjoint one-form A, see .

Theorem 5.17. Let (A, H, D) be a reqular spectral triple which is simple and let A € Q% (A)
be a selfadjoint gauge potential. Then,

Cp-(0) = Co(0) + 3 %][ (AD1)e. (47)
q=1
The proof needs few preliminaries.
Definition 5.18. For an operator T, define the one-parameter group and notation

o.(T) := |D|*T|D|%, z € C.
e(T) :=V(T)D 2, (recall that V(T) = [D*,T)).

The expansion of the one-parameter group o, gives for T' € OP1?
N
o.(T) ~ > glz,r)e"(T) mod OP N1+ (48)
r=0

where g(z,r) = L(%)--- (5 —(r—1)) = (27{2) with the convention ¢(z,0) := 1.

We fix a regular spectral triple (A, H, D) of dimension d and a self-adjoint 1-form A.
Despite previous remark before Lemma [5.15] we pay attention here to the kernel of D4 since
this operator can be non-invertible even if D is, so we define

Dy:=D+ A where A:=A+cJAJ ",
Dy =Dy + Py (49)
where P, is the projection on Ker D 4. Remark that A € D(A)NOP® and Dy € D(A)NOP.

We note
VA = PA — Po .

As the following lemma shows, V4 is a smoothing operator:
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Lemma 5.19. (i) ;> Dom(D4)* C Ny, Dom |DI*.
(ii) Ker D4 C N>, Dom |D*.
(iii) For any o, B € R, |D|P P4|D|* is bounded.
(iv) Pye OP~,

Proof. (i) Let us define for any p € N, R, := (Ds)? — DP, so R, € OPP~! and moreover
Ry(Dom [D[") € Dom |D.
Let us fix k € N, k > 2. Since Dom D4 = Dom D = Dom |D|, we have

Dom(D4)" ={¢ € Dom|D| : (D' + R;)¢ € Dom|D|, Vj 1<j<k—1}.

Let ¢ € Dom(Dy4)*. We prove by recurrence that for any j € {1,--- ,k—1}, ¢ € Dom |D}7*!:

We have ¢ € Dom |D| and (D + Ry) ¢ € Dom|D|. Thus, since Ry ¢ € Dom |D|, we have
D¢ € Dom |D|, which proves that ¢ € Dom |D|?. Hence, case j = 1 is done.

Suppose now ¢ € Dom [D|* fora j e {1,--- ,k—2}. Since (D’ + R;,1) ¢ € Dom |D],
and R;.1 ¢ € Dom |D|, we get D’*! ¢ € Dom |D|, which proves that ¢ € Dom |D}7*2.

Finally, if we set j = k — 1, we get ¢ € Dom |D|*, so Dom(D4)* C Dom |D|*.

(i) follows from Ker Dy C Ny>; Dom(D4)* and (i).

(17i) Let us first check that |D|*P, is bounded. We define Dy as the operator with
domain Dom Dy = Im P4 N Dom |D|* and such that Dy ¢ = |D|*¢. Since Dom Dy is finite
dimensional, D, extends as a bounded operator on H with finite rank. We have

sup I1DI*Pagll < sup D" ¢l = [[Doll < o0

$p€Dom |D[* Py, [|4]|<1 ¢€Dom Dy, ||¢]|<1

so |D|*Py is bounded. We can remark that by (i7), Dom Dy = Im P4 and Dom |D|*Py = H.
Let us prove now that P4|D|* is bounded: Let ¢ € Dom P4|D|* = Dom |D|*. By (ii),
we have Im P4 C Dom |D|* so we get

[Pa[DI" ¢ < sup  [<¢[D[*¢>|<  sup [ <[D[", ¢ >
et Py, [9l<1 et Py, [$)<1
< sup  [ID[* ol = [ Dol |l -

YEIm Py, [[¥]|<1

(iv) For any k € Ny and t € R, §%(P4)|D| is a linear combination of terms of the form
|D|?P4|D|%, so the result follows from (iii). O

Remark 5.20. We will see later on the noncommutative torus example how important is the
difference between Dy and D + A. In particular, the inclusion KerD C KerD + A is not
satisfied since A does not preserve Ker D contrarily to A.

Let us define

X :=D%—D?=AD + DA + A%,
XV f:X+VA,

thus X € D;(A) NOP! and by Lemma[5.19

Xy ~X mod OP~, (50)
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We will use
Y :=log(D3) — log(D?)

which makes sense since D% = D% + P, is invertible for any A. By definition of Xy, we get
Y = log(D? + Xy ) — log(D?).

Lemma 5.21. (i) Y is a pseudodifferential operator in OP~ with the following expansion
for any N € N
N-p

N
Z Z kap(kam(...kal(x)...))D—2(lkll+p> mod OP~ N1,
p=1 - kp=

|kl1+p

(i1) For any N € N and s € C,

N
D™ ~ D[+ 3 K,(Y,s)|D|™* mod OP~N~17R() (51)

p=1
with K,(Y,s) € OP7P.
Proof. (i) We follow [13, Lemma 2.2]. By functional calculus, Y = [ I(\) d\, where

I(\) ~ ﬁvj(—wﬂ((z)? +0)7Xy) (D + )™ mod OP™N,

p=1
By , ((D2 + A)_lXV)p ~ ((D2 + )x)_lX)p mod OP~>° and we get
N
1) ~ 3 (=17 (D + ) 7'X) (D2 + 27" mod OP™N3,
p=1

We set A,(X) = ((D2 + )\)*1)()23(D2 +A)land L:=(D*+\)"' € OP2 for a fixed .
Since [D? + )\, X] ~ V(X) mod OP~>, a recurrence proves that if 7" is an operator in OP",
then, for ¢ € Ny,

A(T) = LTL ~ Z T)L*? mod OP™ 47"
With A,(X) = LXA,_1(X), another recurrence gives, for any ¢ € Ny,
q
AX)~ S ()R (XVE (L XVR(X) - ) LT mod QPP

ki, kp=0

which entails that

N N—p
IA) ~ (=17 30 ()M (VB (- X VR (X)) LT mod 0PN
p=1 ki, ,kp=0

With [5°(D? + \) =R +DaN =
the remainders. Such a control is given 1n (13, (2.27)].

SD~ 2(kh+P) e get the result provided we control
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(43) Applied to |D4|™* = eP~(/2Ye=B | D|=% where B := (—s/2)log(D?), the Duhamel’s
expansion formula

eVVel = V(t) - V(t,)dt - dt,

n=070St1St2S<

with V(t) := eVVe 'V gives

[Dal™ =D+ > K,(Y, )| D] (52)

p=1

and each K,(Y,s) is in OPP. O
Corollary 5.22. For anyp € N and ry,--- ,r, € Ng, e (Y)---e™(Y) € ¥y (A).

Proof. If for any ¢ € N and k = (ky,--- , k;) € N{,

(,1)\k|1+q+1

k -
[0(X) = Tt

ke (X VFe1 (o XVR (X)),

then, I*(X) € OP¥h+4. For any N € N,

N N—q
Y~ 3 I (X)D2Fita) mod OP~N1, (53)
q:1 kl,-",quo

Since the I'¥(X) are in D(A), this proves with that Y and thus e"(Y) = V" (Y)D™%,
are also in Uy (A). O

Proof of Theorem[5.17. Again, we follow [13]. Since the spectral triple is simple, equation

entails that
(p4(0) = Cp(0) = Tr(K1 (Y, s)[D|™*)js=0 -
Thus, with , we get (p,(0) —(p(0) = —3FY.
Now the conclusion follows from f log ((1 + S)(1 + T)) = flog(1 + S) + flog(1 4+ T') for
S,T € W(A) N OP™" (since log(1 + §) = ¥.20, CU"Z67) with § = DA and T = AD™;

n=1

so flog(1+ XD%) = 2flog(l + AD™') and
—g][yzz%][(ﬁp—l)Q. 0
q=1

Lemma 5.23. For any k € Ny,

k k—p
Res (p,(s) = Res Cp(s)+3>. > Res h(s,r,p) Tr (e () ---em (V) |D| ),

p=17ry,,rp=0 s=d—

where

h(s,r,p) = (—3/2)p/ g(—sty, 1) g(—st,,ry)dt.

0<t1<-<tp<1
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Proof. By Lemma (13), [Da| =% ~ \D|_S+Z§:1 K,(Y,s)|D|™* mod OP~*:+)=R() where
the convention >y = 0 is used. Thus, we get for s in a neighborhood of d — k,

k
[Da|™* = [D|™* = 3" K, (Y, 8)|D| "> € OP~ D78 € £1(H)
p=1
which gives

k
Rgs, (oa() = Res (o(s) + 3 Res, Tr (Ky(Y,5)IDI ™) (54)

Letusfix 1 <p<kand N € N. Byweget

N
K,(Y,s) ~ —ﬁp/ —sty,r1) - g(—st,,r
p( ) ( 2) 0§t1§---tp§1m’,§pog( 1 1) g( P p)

e(Y)---e(Y)dt mod OP™N"P~1 (55)

If we now take N = k — p, we get for s in a neighborhood of d — k

k—p
E,(Y.s)|D|™* = 3" h(s,r,p)e™(Y)--e"(Y)|D| ™ € OP™* 1770 € £1(H)
r1,,rp=0

SO gives the result. ]

Our operators |D4|* are pseudodifferential operators:

Lemma 5.24. For any k € Z, |D4|" € U*(A).

Proof. Using , we see that K,(Y,s) is a pseudodifferential operator in OP~?, so
proves that |D4|* is a pseudodifferential operator in O P*. ]

The following result is quite important since it shows that one can use f for D or D 4:
Proposition 5.25. If the spectral triple is simple, R_eos Tr <P|DA|*S) = £ P for any pseu-
dodifferential operator P. In particular, for any k € Ny

—(d—k) _
F1D4 Res (. (s).

Proof. Suppose P € OP* with k € Z and let us fix p > 1. With , we see that for any
N e N,

N
PE,(Y,s)|D|™* ~ Y h(s,r,p) Pe"(Y)---€(Y)|D|™* mod QP NP1k,
71, ,mp=0
Thus if we take N =d — p + k, we get
n—p+k

Res Tr (PK,(Y,)D| ") = 3 Res h(s,r,p) Tr (Pem(v)---e™(YV)|D|™*).

71, ,rp=0
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Since s = 0 is a zero of the analytic function s — h(s,r,p) and s — Tr Pe™ (Y) e (Y)|D|*
has only simple poles by hypothesis, we get E{Eg h(s,r,p) Tr (Pa”(Y) e (Y )|D|_ ) 0
and

Res Tr (P, (Y,5)|D]™*) = 0. (56)

Using (51), P|Da|™ ~ P|D|~* + Y52 PK,(Y,)[D|™* mod OP~#"1=%() and thus,

k+d
Res Te(P|D4| ) ][P + Z Res Tr (PI,(Y,5)| D] ™). (57)

The result now follows from and . To get the last equality, one uses the pseudodif-
ferential operator |D 4|~(4=). O

Proposition 5.26. If the spectral triple is simple, then
F1Dal™ = 1D, (58)

Proof. Lemma [5.23| and previous proposition for k = 0. [

Lemma 5.27. If the spectral triple is simple,
() f 1Dl = f D70 - % 1§ X|DI,
(i) DA77 = f D702 4 42 (= L XD + 4 X2\ D).
Proof. (i) By ,
Res €0, () — Cols) = Res, (—s/2) Tr (VID|) = ~42 Reg Tr ([ -] D] )

where for the last equality we use the simple dimension spectrum hypothesis. Lemma m (1)
yields Y ~ XD~2 mod OP~2 and Y|D|"@Y ~ X|D|=%! mod OP~%! C L*(H). Thus,

Res Tr (Y| D|~"V|D|™*) = Res Tr (X|D|~*"'|D| ) = ][X|D|*‘H.
s=0 s=0
(44) Lemma [5.23] (é4) gives
1
JRes, (o, (5) = Res, Co(s) + Res, 3 hisr 1) Tr ("(")IDI™*) + h(s,0,2) Tr (Y2|D| ™).

We have h(s,0,1) = =%, h(s,1,1) = 1(£)? and h(s,0,2) = 5(£)% Using again Lemma@
(4),

Y ~ XD - 1v(X)D™* - 1X*’D™* mod OP*.
Thus,
Res Tr (Y|D| ") = f X|D|~* = Lf(V(x) + X2)|D| >
Moreover, using f V(X)|D|™% = 0 for any k > 0 since f is a trace,

Res, T (=0)IDI?) = Res, T (VOX)DDI) = 4 9(X)|DI> =0
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Similarly, since Y ~ XD™2 mod OP~2 and Y2 ~ X2D~* mod OP~3, we get

Res Tr (V2D ™) = Res Tr (X*D~4|D|~) = £ X*|D| >,

Thus,
Res (p,(s) = Res Cp(s)+(~52)(f XD = }f(V(X) + X*)|D| )
+%d;22 V)7 + (452 XD,
Finally,
Res Co,(s) = Res Co(s) + (—452)( XIDI™ = 1 X3|D|27) - L(#52)2f X*| D)2
and the result follows from Proposition [5.25] ]

Corollary 5.28. If the spectral triple satisfies §|D|~4~2 = f AD|D|~% = f DA|D|~¢ =
e ][|DA|‘(H) = W(][ADAMDM—%df;?][fﬂprd).
Proof. By previous lemma,

Res (p,(s) = 2( - ][212|Dy—d + g][< ADAD + DADA + AD*A + DA*D)|D|~*?).
Since V(A) € OP?!, the trace property of § yields the result. O

5.5 Tadpole

In [31], the following definition is introduced:

Definition 5.29. In (A, H, D), the tadpole Tadpy a(k) of order k, fork e {d—1:1€N}
is the term linear in A = A* € Qk, in the A* term of (considered as an infinite series)
where D — D + A.

If moreover, the triple (A, H, D, J) is real, the tadpole Tady, (k) is the term linear in

A, in the A* term of where D — D + A.

Proposition 5.30. Let (A, H, D) be a spectral triple of dimension d with simple dimension
spectrum. Then

Tadpoa(d— k) = —(d — k:)][ AD|D|" @02 g £ 4, (59)

Tadp. 4(0) = —][ AD1, (60)

Moreover, if the triple is real, Tad,, 7 = 2Tadpa.
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Proof. We already proved the following formula, for any k € N,

][|DA| (d—k) ][|D| (d=F) —1—2 Z Res h(s,r,p) Tr( Tl(Y)...g”p(Yﬂ'D]_S),

p=17y,,rp=0

with here X := AD + DA+ A2, A:= A+ eJAJ .
As a consequence, for k # n, only the terms with p = 1 contribute to the linear part:

k—1
Tad,,, ;(d — k) = LmA(][ D]~ Py = ;)ng_skh(s,r, 1) Tr (" (Lina(Y))[D] ).
We check that for any N € N*,

N-1
Ling(Y) ~ Y T4(AD + DA)D 2 mod OP™ V1.
=0

Since I') (AD+DA) =
spectrum to be simple

z+1 A (AD+DA) = l+1 {Vl( A), D}, we get, assuming the dimension

k—1
Tad,,, 7(d — k) gsgff,kh(s,r, p) Tr (e"(Lina(Y))|D| )
k—1 k—1—r
= L hln—kn1) 3 G Res, Tr (({9'(A), DYIDI~ )
=0
kflfr
_th (d—k,r1) Z =, ][Vr—l—l( A)D|D|-(d-k+2(r+)-2
r=0 =0

~(n — k){ AD|D|-02,
because in the last sum it remains only the case r+1 =10, sor =1 = 0.

Formula is a direct application of Theorem m
The link between Tad,,, y and Tadpy 4 follows from JD = ¢D.J and Lemma W O

Corollary 5.31. In a real spectral triple (A, H,D), if A= A* € Qh(A) is such that A =0,
then Tadpa(k) =0 for any k € Z, k < d.

The vanishing tadpole of order 0 has the following equivalence (see [13])
][AD*1 —0, VA € QL(A) — ][ab - ][aa(b), Va,b e A, (61)

where a(b) := DbD™1.

The existence of tadpoles is important since, for instance, A = 0 is not necessarily a stable
solution of the classical field equation deduced from spectral action expansion, [51].
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5.6 Commutative geometry

Definition 5.32. Consider a commutative spectral triple given by a compact Riemannian
spin manifold M of dimension d without boundary and its Dirac operator ID associated to
the Levi-Civita connection. This means (A = C>®(M), H := L*(M,S), lD) where S is the
spinor bundle over M. This triple is real since, due to the existence of a spin structure, the
charge conjugation operator generates an anti-linear isometry J on H such that

JaJ ' =a*, Vac€ A, (62)
and when d is even, the grading is given by the chirality matriz

X = (=) 412y (63)
Such triple is said to be a commutative geometry.

In the polynomial algebra D(.A) of Definition , we added A°. In the commutative case,
A° ~ JAJ ! ~ A as indicated by which also gives

JAJ ' = —cA*, VA€ QL(A) or A=0when A= A", (64)

As noticed by Wodzicki, f P is equal to —2 times the coefficient in log t of the asymptotics
of Tr(Pe *?") as t — 0. It is remarkable that this coefficient is independent of ) as seen in
Theorem and this gives a close relation between the  function and heat kernel expansion
with WRes. Actually, by [48, Theorem 2.7]

Te(PetP') ~ 3 gt 00 L3 (—ai logt + b ¢, (65)
k=0 k=0

SO

][P: 2ay,.

Remark that f, WRes are traces on \II(C’OO(M )), thus Corollary |1.23| implies

fP:cW%wP (66)

Since, via Mellin transform, Tr(P ™) = r(ls) Jo =L Te(P e~ dt, the non-zero coeffi-

cient @}, k # 0 creates a pole of Tr(P J)~%*) of order k 4 2 because we get f; t5log(t)* dt =
(=1)kk! and

SFFI

['(s) = i +v+sg(s) (67)
where 7 is the Euler constant and the function ¢ is also holomorphic around zero.

We have f1 = 0 and more generally, WRes(P) = 0 for all zero-order pseudodifferential
projections [112].

As the following remark shows, being a commutative geometry is more than just having
a commutative algebra:
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Remark 5.33. Since Jr(a)J ' = 7w(a*) for alla € A and A = 0 for all A = A* € Q)
when A is commutative by , one can only use Dy = D + A to get fluctuation of D: It
is amazing to see that in the context of noncommutative geometry, to get an abelian gauge
field, we need to go outside of abelian algebras. In particular, as pointed out in [107], a
commutative manifold could support relativity but not electromagnetism.

However, we can have A commutative and Jr(a)J ™" # w(a*) for some a € A [27,65]:
Let Ay = C ® C represented on H, = C* with, for some complex number m # 0,

by 0 0
ma):=| 0 b 0 |, fora= (b, be) € A,
0 0 by
and
0 m m 1 0 O 1 00
Di=|m 0 0 |, x1:=[0 -1 0 ,Ji:=10 0 1 Jocc
m 0 0 0 0 -1 010

where cc is the complex conjugation. Then (Ay, Hi, D) is a commutative real spectral triple
of dimension d = 0 with non zero one-forms and such that Jymi(a)J; " = m(a*) only if
a= (by,by).

Take now a commutative geometry (AQ =C®(M), H=L*(M,S), Do, Xo, Jg) defined in
where d = dimM s even, and then take the tensor product of the two spectral triples,
namely A=A @Ay, H=H1Q@Hy, T=m @72, D=D1 @ x2+ 10 D3, x = x1 ® X2 and
J is either x1J1 @ Jy when d € {2,6} mod 8 or J; ® Jo in the other cases, see [27,105].

Then (A, H, D) is a real commutative spectral triple of dimension d such that A0 for
some selfadjoint one-forms A, so is not exactly like in Definition [5.33

Proposition 5.34. Let Sp(M) be the dimension spectrum of a commutative geometry of
dimension d. Then Sp(M) is simple and Sp(M) ={d —k|k € N}.

Proof. Let a € A = C*(M) such that its trace norm ||a||z: is non zero and for k € N, let
Py :=a|D|™*. Then B, € OP™" C OP? and its associated zeta-function has a pole at d — k:

Res CF(s) = Res CFi(s + d — k) = Res Tr (afD D]~ +*) = fa|p|
= [ o) [, (@) ) del el = [ ate) [ 1lell~1de] |da
= C/M a(z) dvoly(x) = cllal|r # 0.

Conversely, since W°(A) is contained in the algebra of all pseudodifferential operators of order
less or equal to 0, it is known [52111}/112] that Sp(M) C {d—k : k € N} as seen in Theorem
41l

All poles are simple since D being differential and M being without boundary, aj, = 0, for
all £ € N* in (65)). O

Remark 5.35. Due to our efforts to mimic the commutative case, we get as in Theorem
that the noncommutative integral is a trace on V*(A). However, when the dimension
spectrum is not simple, the analog of WRes is no longer a trace.
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The equation (58) can be obtained via and since ULDArd = ULDM.
In dimension d = 4, the computation in of coefficient ay(1,D?) gives

(p,(0) = cl/ (5R* — 8Ruvr™ — TR 0 R*?7 dvol + cz/ tr(F,, F*) dvol,
M M

see C’omllary to see precise correspondence between ay,(1, D?) and (p,(0). One recognizes
the Yang-Mills action which will be generalized in Section to arbitrary spectral triples.
According to Corollary[5.31], a commutative geometry has no tadpoles.

5.7 Scalar curvature

What could be the scalar curvature of a spectral triple (A, H,D)? Of course, we need to
consider first the case of a commutative geometry (C°° (M), L*(M, S), IP) of dimension d = 4:
We know that § f(z)D~%"2 = [,, f(x) s(x) dvol(z) where s is the scalar curvature for any
f € C®(M). This suggests the following

Definition 5.36. Let (A, H,D) be a spectral triple of dimension d. The scalar curvature is
the map R :a € A — C defined by

R(a) = ][aD_d”.

In the commutative case, R is a trace on the algebra. More generally

Proposition 5.37. If R is a trace on A and the tadpoles f AD~% are zero for all A € QL
R is invariant by inner fluctuations D — D + A.

See 31}, Proposition 1.153] for a proof.

5.8 Tensor product of spectral triples

There is a natural notion of tensor for spectral triples which corresponds to direct product
of manifolds in the commutative case. Let (A;,D;,H;), i = 1,2, two spectral triples of
dimension d; with simple dimension spectrum. Assume the first to be of even dimension,
with grading x;.

The spectral triple (A, D, H) associated to the tensor product is defined by

A=A A3, D:=D;®1+x1®Dy, H:=H R Hs.

The interest of x; is to guarantee additivity: D* =D ® 1+ 1 ® D3.
We assume that

Tr(e’tD%) ~yo aq N2 Tr(e’tpg) ~ o ag t~ %212, (68)

Lemma 5.38. The triple (A, D,H) has dimension d = d; + ds.
Moreover, the function (p(s) = Tr(|D|~*) has a simple pole at s = dy + dy with

Resema,+a (C0(5)) = 5 "7 Resema, (Cp, (5)) Resoma, (G0 (5)).
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Proof. 1f (u,(A)) are the singular values of A,

0(25) =3 (D} @1+10D3) " = > (1a(D}) + pm(D3)) .
n=0 n,m=0

—(c14c2)/2
Since (un(D1)2 -+ ,um(DQ)Z) (e < pin(D1) " (Do) ™2, this shows in particular that

(plc1 + ) < (p,(c1)Cp,(c2) if ¢; > d;, and in particular that
d:=inf{ceR" : (p(c) <00} <d +dy.
We claim that d = d; + dy: recall first that in (68])
a; == Ress—_q,/2 (F(S)Cpi(ZS)) =I'(d;/2) Resg—q, /2 (Cpi(25)>
= 11(di/2) Rese—, ((p,(5))- (69)
If f(s) = T(s) Cp(25),

f(s)=T(s) Tr ('D_25) = Tr(/ooo e_tDQtS_ldt) = /01 Tr (e‘m2> 5= dt + g(s)

= [T (P T (e PR) £ i+ )

where ¢ is a holomorphic function since the map = € R — [ et *=1d¢ is in Schwartz
space.

Since Tr (e*m%) Tr (e*tDZ%) ~i0 Grag t 4T )/2 e get that the function f(s) has a simple
pole at s = (d; + dy)/2. We conclude that (p(s) has a simple pole at s = dy + ds.
Moreover, thanks to (69)),

S0 ((dh + d2)/2) Rese—q (Cp(s)) = $T(dr/2) Reso—a, (Cp,(5)) 3T(d2/2) Res—g, (Cpy(s)). O
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6 Spectral action

6.1 On the search for a good action functional

We would like to obtain a good action for any spectral triple and for this it is useful to look
at some examples in physics.

In any physical theory based on geometry, the interest of an action functional is, by a
minimization process, to exhibit a particular geometry, for instance, trying to distinguish
between different metrics. This is the case in general relativity with the Einstein—Hilbert
action (with its Riemannian signature).

6.1.1 Einstein—Hilbert action

This action is
Sen(9) == [ s(x) dvol, () (70)

where s is the scalar curvature (chosen positive for the sphere). This is nothing else (up to
a constant, in dimension 4) than f J0~> as quoted after (40)).

This action is interesting for the following reason: Let M be the set of Riemannian metrics
g on M such that [, dvol, = 1. By a theorem of Hilbert [5], g € M, is a critical point of
Ser(g) restricted to M, if and only if (M, g) is an Einstein manifold (the Ricci curvature
R of ¢ is proportional by a constant to g: R = cg). Taking the trace, this means that
sy = ¢ dim(M) and such manifold have a constant scalar curvature.

But in the search for invariants under diffeomorphisms, they are more quantities than the
Einstein-Hilbert action, a trivial example being [, f (sg(x)) dvol,(x) and they are others [43].
In this desire to implement gravity in noncommutative geometry, the eigenvalues of the Dirac
operator look as natural variables [70]. However we are looking for observables which add up
under disjoint unions of different geometries.

6.1.2 Quantum approach and spectral action

In a way, a spectral triple fits quantum field theory since D~! can be seen as the propagator
(or line element ds) for (Euclidean) fermions and we can compute Feynman graphs with
fermionic internal lines. As explained in section the gauge bosons are only derived
objects obtained from internal fluctuations via Morita equivalence given by a choice of a
connection which is associated to a one-form in Q5(.A). Thus, the guiding principle followed
by Connes and Chamseddine is to use a theory which is pure gravity with a functional action
based on the spectral triple, namely which depends on the spectrum of D [11]. They proposed
the following

Definition 6.1. The spectral action of a spectral triple (A, H, D) is defined by
S(D, f,A) = Tr (f(D?/A?))

where A € RT plays the role of a cut-off and f is any positive function (such that f(D?/A?)
is a trace-class operator).
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Remark 6.2. We can also define S(D, f,A) = Tr (f(D/A)) when [ is positive and even.
With this second definition, S(D, g, \) = Tr (f(D2/A2)> with g(x) == f(x?).

For f, one can think of the characteristic function of [—1, 1], thus f(D/A) is nothing else
but the number of eigenvalues of D within [—A, A].

When this action has an asymptotic series in A — oo, we deal with an effective theory.
Naturally, D has to be replaced by D4 which is a just a decoration. To this bosonic part of the
action, one adds a fermionic term %(J W, D) for ¢ € H to get a full action. In the standard
model of particle physics, this latter corresponds to the integration of the Lagrangian part
for the coupling between gauge bosons and Higgs bosons with fermions. Actually, the finite
dimension part of the noncommutative standard model is of K O-dimension 6, thus (¢, D))

has to be replaced by %<J’I7Z),D’Q/J> for ¢ = xv € H, see [31].

6.1.3 Yang—Mills action

This action plays an important role in physics so it is natural to consider it in the noncommu-
tative framework. Recall first the classical situation: let G be a compact Lie group with its Lie
algebra g and let A € Q'(M, g) be a connection. If F:= da + 3[A, A] € Q*(M, g) is the cur-
vature (or field strength) of A, then the Yang-Mills action is Sy (A) = [y, tr(F A *F) dvol,,.
In the abelian case G = U(1), it is the Maxwell action and its quantum version is the quan-
tum electrodynamics (QED) since the un-gauged U(1) of electric charge conservation can be
gauged and its gauging produces electromagnetism [99]. It is conformally invariant when the
dimension of M is d = 4.

The study of its minima and its critical values can also been made for a spectral triple
(A, H,D) of dimension d [24,225]: let A € QL(A) and curvature § = dA + A?; then it is
natural to consider

I(A) := Trp;, (6D %)
since it coincides (up to a constant) with the previous Yang-Mills action in the commutative
case: if P = 62?|D|7¢, then Theorems and give the claim since for the principal
symbol, tr(ap($,§)> = ctr(F AxF)(z).

There is nevertheless a problem with the definition of dA: if A = Y, 7(a;)[D,7(b;)],
then dA = ;[D,7(a;)][D,7(b;)] can be non-zero while A = 0. This ambiguity means
that, to get a graded differential algebra Q% (A), one must divide by a junk, for instance
02~ 7(Q?/m ((5 (Ker(w) N Ql)) where QF(A) is the set of universal k-forms over A given by
the set of agday - - - dag (before representation on H: w(agday - - - dag) := ap[D, a1] - - - [D, ai)).
Let Hj be the Hilbert space completion of 7(2%(A)) with the scalar product defined by
(A1, A9)g = Trpi (A5 A D7) for A; € m(QF(A)).

The Yang—Mills action on Q'(A) is

Syu (V) := (6V + V2,6V + V3. (71)

It is positive, quartic and gauge invariant under V. — m(u)V7(u*) + 7(u)[D, 7(u*)] when
u € U(A). Moreover,

Synm(V) =inf{I(w)|w € Q' (A), 7(w) =V}

since the above ambiguity disappears when taking the infimum.
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This Yang—Mills action can be extended to the equivalent of Hermitean vector bundles
on M, namely finitely projective modules over A.

The spectral action is more conceptual than the Yang—Mills action since it gives no
fundamental role to the distinction between gravity and matter in the artificial decomposition
D, = D+ A. For instance, for the minimally coupled standard model, the Yang—Mills action
for the vector potential is part of the spectral action, as far as the Einstein—Hilbert action
for the Riemannian metric [12].

As quoted in [17], the spectral action has conceptual advantages:

- Simplicity: when f is a cutoff function, the spectral action is just the counting function.

- Positivity: when f is positive (which is the case for a cutoff function), the action
Tr ( f(D/ A)) > 0 has the correct sign for a Euclidean action: the positivity of the function f
will insure that the actions for gravity, Yang-Mills, Higgs couplings are all positive and the
Higgs mass term is negative.

- Invariance: the spectral action has a much stronger invariance group than the usual
diffeomorphism group as for the gravitational action; this is the unitary group of the Hilbert
space H.

However, this action is not local. It only becomes so when it is replaced by the asymptotic
expansion:

6.2 Asymptotic expansion for A — oo

The heat kernel method already used in previous sections will give a control of spectral action
S(D, f,A) when A goes to infinity.

Theorem 6.3. Let (A, H,D) be a spectral triple with a simple dimension spectrum Sd.
We assume that

Tr (e’tDZ) ~ Y agt®  with aq # 0. (72)

£L0 aesSd

Then, for the zeta function (p defined in (44)
to = 3 Rese— aa (T(5/2)Cp(s)). (73)

(i) If « < 0, {p has a pole at —2a with a, = %F(—a)sggsa Cp(s).
(ii) For a =0, we get ag = (p(0) + dim Ker D.
(7ii) If « > 0, a, = C(—Qa)sfzigsa ['(s).

(iv) The spectral action has the asymptotic expansion over the positive part Sd* of Sd:

T (f(D/N) |~ 3 S NP+ F(0)Co(0) + - (74)
—+00
geSd+
where the dependence of the even function f is fs = [5° f(z)2®~VYdz and --- involves the

full Taylor expansion of f at 0.

Proof. (i): Since D(s/2)|D|™* = [ e P t5/2Vdt = [ e D" 15/271dt 4+ f(s), where the

function f is holomorphic (since the map = — [;° e~ 25/2-1 4t is in the Schwartz space),

the swap of Tr (e_mz) with a sum of a, t* and a, fj t*+*/>~1 dt = 220 yields (73).
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(i1): The regularity of T'(s/2)~! ~, s/2 around zero implies that only the pole part at

s=0of [°Tr (e‘tD2) t*/2=1 dt contributes to (p(0). This contribution is ag fy ¢/~ dt = 240
(7i7) follows from ([73]).
(iv): Assume f(z) = g(z?®) where g is a Laplace transform: g(z) := [;° e % ¢(s) ds. We
will see in Section how to relax this hypothesis.
Since g(tD?) = [ e 7" ¢(s) ds, Tr (g(tDz)) ~ Yaespt Gat® o 5% g(s)ds. When o < 0,

t10
s =D(=a)™ [Pe ™y tdy and [§7 5% ¢(s)ds = T(—a)~" [ g(y) y~* " dy. Thus

Tr (9(tD?)) T 2 [ Res Co(s) /0 Ty dy] .
a€Sp~

Thus follows from (3), (i) and 1 J5° g(y) y** ' dy = [§° f(z) 27" da. O
It can be useful to make a connection with of Section :
Corollary 6.4. Assume that the spectral triple (A, H,D) has dimension d. If

Tr(e_tDQ) ~ > th=D/2 4 (DY) + -, (75)
0 ko a)
then
SOAN) ~ Y fih apn(D) + f(0)as(D) + -
O ey

with fr := ﬁ [ f(s)s*2 ds.
Moreover,

ap(D?) = %r(%)][u}rd*k fork=0,--,d—1, (76)

aq(D?) = dim Ker D + (p2(0).
Proof. We rewrite the hypothesis on Tr (e_tDQ) as

Tr(e_tDQ) ~ 3 At + Ag= S 0 D24 (D?) + ay(D?)
"0 aef-djz -1/2) kel 1 .d)

with ak(DQ) = A(k—d)/2-
For a < 0, we repeat the above proof:

SN ;X AN [ s+ A
ac{—d/2,,—1/2} °
= Z A(l—d)/? Ad_lm / f(S)S(d_l)/2_1dS + AOf(O)
le{1,-,d} 0
= T ah ity [ ) s 4 aaf (0)
le{1,--,d}
= X eashig [ 68 s+ aaf ),
ke{l,-,d} 0
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Again, for a < 0,
Ay = i (—a) Bgs Tr <|D|_S) =1I(-a) Res Tr <|D|_(S_2°‘))

= iI(~a) Res Tr (|D[*|D| ) ]l|1>|2a

ar(D?) = Ag—ay2 = 5T(%55) ][|D’ T, O

The asymptotics uses the value of (p(0) in the constant term A% so it is fundamental
to look at its variation under a gauge fluctuation D — D + A as we saw in Theorem

6.3 Remark on the use of Laplace transform

The spectral action asymptotic behavior

S(D, f, A ch A" a,(D?) (77)

A HJroo ot

has been proved for a smooth function f which is a Laplace transform for an arbitrary
spectral triple (with simple dimension spectrum) satisfying . However, this hypothesis is
too restrictive since it does not cover the heat kernel case where f(z) = e™".

When the triple is commutative and D? is a generalized Laplacian on sections of a vector
bundle over a manifold of dimension 4, Estrada—Gracia-Bondia—Varilly proved in [38| that
previous asymptotics is

Tr (f(DQ/AQD ~ ﬁ {(rk(E) /OOO xf(x) dx) A+ (bQ(D2) /OOO f(z) dx) A2
T ( i (=)™ f(m)(o) b2m+4<D2)> A2m], A — o0

m=0

where (—1)™by,44(D?) = (4m7r,) tm(D?) are suitably normalized, integrated moment terms of
the spectral density of D2

The main point is that this asymptotics makes sense in the Cesdro sense (see [38] for
definition) for f in K'(R), which is the dual of C(R). This latter is the space of smooth
functions ¢ such that for some a € R, ¢ (z) = O(|z|*"*) as |z| — oo, for each k € N. In
particular, the Schwartz functions are in IC(R) (and even dense).

Of course, the counting function is not smooth but is in K'(R), so such behavior (77)) is
wrong beyond the first term, but is correct in the Cesaro sense. Actually there are more
derivatives of f at 0 as explained on examples in 38| p. 243]. See also Section

6.4 About convergence and divergence, local and global aspects of
the asymptotic expansion

The asymptotic expansion series of the spectral action may or may not converge. It is
known that each function g(A™!) defines at most a unique expansion series when A — oo
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but the converse is not true since several functions have the same asymptotic series. We give
here examples of convergent and divergent series of this kind.
When M is the torus T¢ as in Example with A = 6"79,0,,

47) =42 Vol (T?)
$d/2

Tr(etA) — ( + O(tfd/2 671/415)’

thus the asymptotic series Tr(e!®) ~ w, t — 0, has only one term.

In the opposite direction, let now M be the unit four-sphere S* and I be the usual Dirac
operator. By Propostion [5.34}, equation yields (see [20]):

1,2 2 n
Tr(e ) = 5(5+ 51+ 2 et + 0@,
k=0

(—=1)*4 ( Bokt2  Bogia )
3 k! 2k +2 2k +4

Qp ‘=

with Bernoulli numbers Bog. Thus ¢2 Tr(e=#%) ~ 2421+ ai "™ when t — 0 and this
series is a not convergent but only asymptotic:
ag > 35 |’§Z’ff| > 0 and |Bagia| = 2 ((22:);32; C(2k+4) =~ 4\/7(k + 2) (1%2)%+4 — o0 if bk — oo.
More generally, in the commutative case considered above and when D is a differential
operator—Ilike a Dirac operator, the coefficients of the asymptotic series of Tr(e_tDQ) are
locally defined by the symbol of D? at point x € M but this is not true in general: in [46]
is given a positive elliptic pseudodifferential such that non-locally computable coefficients
especially appear in (75) when 2k > d. Nevertheless, all coefficients are local for 2k < d.
Recall that a locally computable quantity is the integral on the manifold of a local frame-
independent smooth function of one variable, depending only on a finite number of derivatives
of a finite number of terms in the asymptotic expansion of the total symbol of D?. For
instance, some nonlocal information contained in the ultraviolet asymptotics can be recovered
if one looks at the (integral) kernel of e *V=2: in T!, with Vol(T') = 2, we get [39]

—tV= inh(?) ty 2~ Ba 2 2t
Te(e tV=3) = 200 _ oth(L) = 2 ] | GO ¢
M) = o =1 - g =5 ,;0 (2k)! LT g TOW

(_1)]€+1 24(2k) thus ‘BQk| ~ 2 When

and the series converges when t < 27, since )2 o~ @

k — oo.

Thus we have an example where ¢ — oo cannot be used with the asymptotic series.

Thus the spectral action of Corollary [6.4] precisely encodes these local and nonlocal be-
havior which appear or not in its asymptotics for different f. The coefficient of the action
for the positive part (at least) of the dimension spectrum correspond to renormalized traces,
namely the noncommutative integrals of . In conclusion, the asymptotic of spectral
action may or may not have nonlocal coefficients.

For the flat torus T?, the difference between Tr(e'2) and its asymptotic series is an term
which is related to periodic orbits of the geodesic flow on T¢. Similarly, the counting func-
tion N(A) (number of eigenvalues including multiplicities of A less than \) obeys Weyl’s law:
N(\) = %%@ A2 4 o(AY2) — see [1] for a nice historical review on these funda-
mental points. The relationship between the asymptotic expansion of the heat kernel and
the formal expansion of the spectral measure is clear: the small-¢ asymptotics of heat kernel
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is determined by the large-\ asymptotics of the density of eigenvalues (and eigenvectors).
However, the latter is defined modulo some average: Cesaro sense as reminded in Section
6.3 or Riesz mean of the measure which washes out ultraviolet oscillations, but also gives
informations on intermediate values of A [39].

In [17,/77] are given examples of spectral actions on (compact) commutative geometries
of dimension 4 whose asymptotics have only two terms. In the quantum group SU,(2), the
spectral action itself has only 4 terms, independently of the choice of function f.

See [63] for more examples.

6.5 About the physical meaning of the spectral action via its
asymptotics

As explain before, the spectral action is non-local. Its localization does not cover all situa-
tions: consider for instance the commutative geometry of a spin manifold M (see Section
of dimension 4. One adds a gauge connection A € I'>® (M , End(S )) to the Dirac operator )
such that D = iy*(9, + A,), thus with a field strength F,, = 0,4, — 0, A, + [A,, A,]. We
can apply with P = D? and find the 3 coefficients a;(1, P) of with i = 0,2,4. The
expansion corresponds to a weak field expansion.

Moreover a commutative geometry times a finite one where the finite one is algebra
is a sum of matrices (like in Remark has been deeply and intensively investigated
for the noncommutative approach to standard model of particle physics, see |21,[31]. This
approach offers a lot of interesting perspectives, for instance, the possibility to compute the
Higgs representations and mass (for each noncommutative model) is particularly instructive
[11}16L|18./58,64,65L72,[80]. Of course, since the first term in (74]) is a cosmological term, one
may be worried by its large value (for instance in the noncommutative standard model where
the cutoff is, roughly speaking the Planck scale). At the classical level, one can work with
unimodular gravity where the metric (so the Dirac operator) D varies within the set M; of
metrics which preserve the volume as in Section [6.1.1] Thus it remains only (!) to control
the inflaton: see [14].

The spectral action has been computed in [61] for the quantum group SU,(2) which is
not a deformation of SU(2) of the type considered in Section on the Moyal plane. It is
quite peculiar since has only a finite number of terms.

Due to the difficulties to deal with non-compact manifolds (see nevertheless Section [9)),
the case of spheres S* or S* x S! has been investigated in [17,20] for instance in the case of
Robertson-Walker metrics.

All the machinery of spectral geometry as been recently applied to cosmology, computing
the spectral action in few cosmological models related to inflation, see [67}/77-79,[83,97].

Spectral triples associated to manifolds with boundary have been considered in [15}[19}/19,
59,60,/62]. The main difficulty is precisely to put nice boundary conditions to the operator D
to still get a selfadjoint operator and then, to define a compatible algebra A. This is probably
a must to obtain a result in a noncommutative Hamiltonian theory in dimension 14-3.

The case of manifolds with torsion has also been studied in [54,86,87], and even with
boundary in [62]. These works show that the Holst action appears in spectral actions and
that torsion could be detected in a noncommutative world.
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7 Residues of series and integral, holomorphic contin-
uation, etc

The aim of this section is to control the holomorphy of series of holomorphic functions.

The necessity of a Diophantine condition appears quite naturally. This section has its own

interest, but will be fully applied in the next one devoted to the noncommutative torus. The

main idea is to get a condition which guarantee the commutation of a residue and a series.
This section is quite technical, but with only non-difficult notions. Nevertheless, the devil

is hidden into the details and I recommend to the reader to have a look at the proofs despite

their lengths.

Reference: [37].

Notations:

In the following, the prime in Y’ means that we omit terms with division by zero in the

summand. B™ (resp. S™') is the closed ball (resp. the sphere) of R™ with center 0 and

radius 1 and the Lebesgue measure on S™! will be noted dS.

For any = = (z1,...,7,) € R" we denote by |z| = \/2? + - - + 22 the Euclidean norm

and |z|y == |xy|+ - + ||
By f(z,y) <, g(x) uniformly in x, we mean that |f(z,y)| < a(y) |g(x)| for all x and y
for some a(y) > 0.

7.1 Residues of series and integral

In order to be able to compute later the residues of certain series, we prove here the following

Theorem 7.1. Let P(X) =9, P;(X) € C[Xy, -+, X,] be a polynomial function where P;

is the homogeneous part of P of degree j. The function

Proy.— N  Pk)
¢(s) = Zkezn DEREES €

has a meromorphic continuation to the whole complex plane C.
Moreover (T (s) is not entire if and only if Pp :={j | [,cqn—1 Pj(u)dS(u) #0} # @. In
that case, (¥ has only simple poles at the points j +n, j € Pp, with

Res ¢F'(s) = Pj(u) dS(u).

s=j+n weSn—1

The proof of this theorem is based on the following lemmas.

Lemma 7.2. For any polynomial P € C[Xy,...,X,] of total degree 6(P) := Y1, degx, P
and any o € Nij, we have

9" (P(I)‘xrs) <LPan (1 + ‘S|)|a‘1’x|*‘7*|a|1+5(P)
uniformly in x € R™, |x| > 1, where o = R(s).

Proof. By linearity, we may assume without loss of generality that P(X) = X" is a monomial.
It is easy to prove (for example by induction on |«|;) that for all @ € Nfj and z € R\ {0}:

o) —s/2 "\ (BL+lul)! i
0 (Jal) =l 3= (i) P e PR
B,p

eng

B+2u=a
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It follows that for all & € Ny, we have uniformly in z € R, |z| > 1:
0 (o) o (14 [/ o] o170 (78)
By Leibniz formula and (78], we have uniformly in z € R, |z| > 1:

o~ (ﬁ|x|—s) - BZ (g) % (z7) 9*° <|x|_s>

sSo

<<'yan Z xviﬁ (1 + ‘8|)|a‘17|5|1 ’x|7‘77|a|1+|5‘1
BLo;B<y

<y a,n (1 + |S|)|a\1 |$|—a—\a|1+w1‘ -

Lemma 7.3. Let P € C[Xy,...,X,] be a polynomial of degree d. Then, the difference

—\" P(k) P(z)
Ap(s) = Spn 5~ Lo T

which is defined for R(s) > d + n, extends holomorphically on the whole complex plane C.

Proof. We fix in the sequel a function ¢ € C*°(R"™,R) such that for all z € R™
0<9(x) <1, ¢x)=1if|z|>1 and ¢(z)=0if|z| <1/2.

The function f(z,s) := () P(z) |z|~*, x € R” and s € C, is in C*°(R" x C) and depends
holomorphically on s.

Lemma above shows that f is a “gauged symbol” in the terminology of [53, p. 4].
Thus [53, Theorem 2.1] implies that Ap(s) extends holomorphically on the whole complex
plane C. However, to be complete, we will give here a short proof of Lemma [7.3}

It follows from the classical Euler—-Maclaurin formula that for any function A : R — C of
class CN*! satisfying limyy 100 B (¢) = 0 and [ |A®)(¢)| dt < +oo for any k=0..., N +1,

that we have .
> h(k) / (Nil /BN+1 RNFD (1) dt

keZ
where By, is the Bernoulli function of order N + 1 (it is a bounded periodic function.)
Fix m’ € Z"! and s € C. Applying to the function h(t) := ¢(m/,t) P(m/,t) |(m/ 1)
(we use Lemma to verify hypothesis), we obtain that for any N € Ny:

S s ma) Pl my) [m'sma)| ™ = [ o', 6) P, 1) (', )] dt4+Rv (s ) (79)

mnp€ZL

N+1

where Ry (m'; s) := (NLN. Jg Bnya (1) # (P (m', ) P(m/,T) [(m/,£)]7*) dt.
By Lemma [7.2]

/IR‘BN+1(t) % (1/}<ml,t) P(m',t) |<ml7t)|*s) (1+|SDN+1 (’ml|+1)fafN+5(P).

Thus Y,czn1 Ry (m'; s) converges absolutely and define a holomorphic function in the half
plane {0 = R(s) > 6(P)+n— N}.
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Since N is an arbitrary integer, by letting N — oo and using above, we conclude
that:

5 > Y(m',mp)P(mymy,)|[(m!,my) |7 = Y /Rz/J(m’,t) P(m/;t) [(m/,t)|~*dt

(m/,;mn)€L~1XZ m/ezn—1

has a holomorphic continuation to the whole complex plane C.
After n iterations, we obtain that

s 30 ) P(m) [m|= = [ (@) P(a) |2 da

has a holomorphic continuation to the whole C.
To finish the proof of Lemma [7.3] it is enough to notice that:

e (0) =0 and ¢p(m) =1, Vm € 2"\ {0};

o s [pa¥0(z) P(z) 2|7 dz = [ epnajo<iz)<1y ¥(7) P(x) |2]7* da is a holomorphic
function on C. O

Proof of Theorem[7.1. Using the polar decomposition of the volume form dz = p"~'dpdS
in R”, we get for R(s) > d + n,

Piw) 5 [7 prent 4 1 A
[ = [Tt [ A s = s [ AW ase),

Lemma [7.3] now gives the result. O

7.2 Holomorphy of certain series

Before stating the main result of this section, we give first in the following some preliminaries
from Diophantine approximation theory:

Definition 7.4. (i) Let § > 0. A vector a € R" is said to be §-badly approximable if there
exists ¢ > 0 such that |q.a —m| > c|q|™°, Vg € Z*\ {0} and Ym € Z.
We note BV(9) the set of 6-badly approximable vectors and BY = Us=oBV() the set of badly
approzimable vectors.

(i) A matriz © € M,(R) (real n x n matrices) will be said to be badly approzimable if
there exists u € Z" such that *O(u) is a badly approzimable vector of R™.

Remark. A classical result from Diophantine approximation asserts that for > n, the
Lebesgue measure of R™ \ BV(0) is zero (i.e almost any element of R" is §—badly approx-
imable.)

Let © € M, (R). If its row of index 7 is a badly approximable vector of R" (i.e. if
L; € BY) then '‘O(e;) € BY and thus O is a badly approximable matrix. It follows that
almost any matrix of M, (R) ~ R" is badly approximable.

The goal of this section is to show the following

Theorem 7.5. Let P € C[Xy, -, X,,] be a homogeneous polynomial of degree d and let b
be in S(Z™ x --- X Z™) (q times, ¢ € N). Then,

(i) Let a € R™. We define fo(s) := > jezn I‘Dk("z) o2mik.a
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1. If a € Z", then f, has a meromorphic continuation to the whole complex plane C.
Moreover if S is the unit sphere and dS its Lebesgue measure, then f, is not entire if and
only if [,egn P(u)dS(u) # 0. In that case, f, has only a simple pole at the point d + n,
with S_RdeJrsn fa(8) = [yegn-1 P(u) dS(u).

2. Ifa e R"\ Z", then f,(s) extends holomorphically to the whole complex plane C.

(ii) Suppose that © € M, (R) is badly approximable. For any (g;); € {—1,0,1}7, the

function
g(s) = Zle(zn)q b(l) fo >, e, (8)
extends meromorphically to the whole complex plane C with only one possible pole on s = d+n.
Moreover, if we set Z :={l € (Z™")? | YF eil; =0} and V :=> .z b(l), then
1. If V [gn1 P(u) dS(u) # 0, then s = d +n is a simple pole of g(s) and

SEdejrsng(s) =V . P(u)dS(u).
2. If V [guo1 P(u)dS(u) = 0, then g(s) extends holomorphically to the whole complex
plane C.
(7ii) Suppose that © € M, (R) is badly approximable. For any (&;); € {—1,0,1}9, the
function

gO(S) = Zle(zn)q\z b(l) f@ Z?leili (8)

where Z :={l € (Z")7 | YL, el; = 0} extends holomorphically to the whole complex plane
C.

Proof of Theorem[7.5:

First we remark that
If a € Z" then f,(s) = Z;ezn%. So, the point (i.1) follows from Theorem ;

9(s) = Xie@manz 0) fo v e, () + (Xiez b(1)) ZZGZ”%' Thus, the point (i)
rises easily from (ii7) and Theorem .
So, to complete the proof, it remains to prove the items (:.2) and (éi).
The direct proof of (i.2) is easy but is not sufficient to deduce (éiz) of which the proof
is more delicate and requires a more precise (i.e. more effective) version of (i.2). The next
lemma gives such crucial version, but before, let us give some notations:

F = {(X12+“?°+<§72>L+1),./2 | P(X) € C[Xy,...,X,] and r € Ny}

We set g =deg(G) =deg(P) — r € Z, the degree of G = (X%Jr.i(;(%ﬂ),./g € F.

By convention, we set deg(0) = —o0.
Lemma 7.6. Let a € R". We assume that d(a.u,Z) = inf,cz|a.u —m| > 0 for some
u € Z". Forall G € F, we define formally,
/ . .
Fo(Gsa;s) = ZkeZ” C|:1§|k) ™ ke and  F(G;a;s) = Zkezni(‘k\g-&(-ﬁ))sﬂ e?mika

Then for all N € N, G € F and i € {0,1}, there exist positive constants C; := C;(G, N, u),
B; := B;(G,N,u) and A; :== A;(G,N,u) such that s — F;(G;«;s) extends holomorphically
to the half-plane {R(s) > —N} and verifies in it:

Fi(Grass) < Ci(1+ 5™ (d(a2) )"
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Remark 7.7. The important point here is that we obtain an explicit bound of F;(G;a;s) in
{R(s) > =N} which depends on the vector a only through d(a.u,Z), so depends on u and
indirectly on a (in the sequel, a will vary.) In particular the constants C; = Ci(G,N,u),
B; = Bi(G,N) and A; := A;(G,N) do not depend on the vector a but only on w. This is
crucial for the proof of items (ii) and (iii) of Theorem[7.5!

7.2.1 Proof of Lemma for i = 1:

Let N € Ny be a fixed integer, and set go :=n + N + 1.
We will prove Lemma by induction on g =deg(G) € Z. More precisely, in order to prove
case i = 1, it suffices to prove that:
Lemma [7.6| is true for all G € F with deg(G) < —go.
Let ¢ € Z with ¢ > —go + 1. If Lemma is true for all G € F such that
then it is also true for all G € F satisfying deg(G) = g.
e Step 1: Checking Lemma [7.6] for deg(G) < —go := —(n+ N +1).
Let G(X) = (Xf+--$§%+1)r/2 € F with deg(G) < —go. It is easy to see that we have uniformly
ins=oc+ir€CandinkeZ™

|G(k) e2ikal |P(k)| 1 1 1
(k241772 — ([k2+1)(rFo)/2 <g ([k[2+1)rFo—deg(P))/2 <g (k24 1) (o —deg(@)/2 <a (Jk[2+1)(e+90)/2

It follows that Fy(G;a;s) = > ezn W e?™ik-a converges absolutely and defines a holo-

morphic function in the half plane {¢ > —N}. Therefore, we have for any s € {R(s) > —N}:

|F1(Gsa;8) < Y W <a ), W <¢g 1.
keZn kezn

Thus, Lemma [7.6]is true when deg(G) < —gpo.

e Step 2: Induction.
Now let g € Z satisfying g > —go+ 1 and suppose that Lemma[7.6]is valid for all G € F with
deg(G) < g — 1. Let G € F with deg(G) = g. We will prove that G also verifies conclusions
of Lemma [7.6}
There exist P € C[Xj, ..., X,] of degree d > 0 and r € Ny such that G(X) = e T;gﬂ)m
and g =deg(G) =d —r.
Since G(k) < (|k|? 4 1)9/2 uniformly in k € Z", we deduce that Fy(G;a;s) converges abso-
lutely in {o = R(s) > n + g}.
Since k +— k 4 u is a bijection from Z" into Z", it follows that we also have for R(s) > n+g¢

. _ 27rzka _ k+u 2mi (k+u).a
Fl(G’ a) s) - Z (|k|2+1 (s+7‘)/2 Z (‘k+u‘2 s+T 6

2mwik.a

_ 2mua P(k+u)
= Z (k22K ut|ul2+1)F+r/2 €

_ 2miu.a u 0“P(k) 2mik.a
=€ > DD (R 2kt a2 1072 €

aeNp;lali=a1++an<d keZ

27rzu a 0*P(k) 2k.u+|ul|? —(41)/2 9rika
RS |k|2+1)<s+r>/z<1+ (k2+1) € ‘
lali<d  kezr
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Let M :=sup(N 4+ n+ ¢,0) € Ny. We have uniformly in k£ € Z"

u+|u (s+r)/ M s+r 2ku [ul s|)
(o ) = 5 (o o)
j=

Thus, for o = R(s) > n+d,

gs) = riua 2° P(k) okt |ul2) ~F)/2 orifa
Fi(Gsa;s) = Z o Z (k[2+1) s+r )72 (1+ (Ik[>+1) €
lali<d  kezn

_ 2mua (S+7‘)/2 6“P(k)(2k.u+|u|2)] 2mi k.a
- ) Z ol > (EEr1) Gz €
kezn

|Oz‘1<dj =0

+OG,M,u((1 + s Z (‘k‘2+1)(a<1kM+lfg)/2>' (80)
kezn

Set 1= {(a,J) € Ny x {0,..., M} | |ofy < d} and I" = I\ {(0,0) }

0°P(X)(2X.u+|ul . %
Set also G jyu(X) = (|X|2+(1W2]>/2) € F for all (a,j) € I,

Since M > N +n + g, it follows from . that

(1 . 627riu.a) Fl(G,a, S) — eQﬂ’iu.a Z uo‘( (S+T)/2>F1 (G(a,j);u; Q; 3) —+ RN(Ga a; u; S) (81)

al J
(e, g)el™

where s — Ry(G;a;u;s) is a holomorphic function in the half plane {o = R(s) > —N}, in

which it satisfies the bound Ry (G;a;u;s) <agna 1.
Moreover it is easy to see that, for any («, j) € I*,

deg(Glaya) = deg(P) +j— (r+2j) S d — s +j— (r+2j) = g — i —j < g — L
Relation and the induction hypothesis imply then that
(1 — e*™ ") Fy(G;a;s) verifies the conclusions of Lemma [7.6l (82)

Since |1 — e?™%¢| = 2|sin(ru.a)| > d(u.a,Z), then implies that Fi(G;a;s) satisfies
conclusions of Lemma This completes the induction and the proof for i = 1.

7.2.2 Proof of Lemma for i = 0:

Let N € N be a fixed integer. Let G(X) = (XIQJFUT;%H)T/Z € Fand g = deg(G) =d—r
where d > 0 is the degree of the polynomial P. Set also M := sup(N + g +n,0) € Np.
Since P(k) < |k|? for k € Z™\ {0}, it follows that Fy(G;a;s) and Fy(G;a;s) converge

absolutely in the half plane {c = R(s) > n + g}.
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Moreover, we have for s =0 +i7 € C with 0 >n +¢:

. _ G(k) 2mik.a _ 1 —s/2 2mik.a
Fo(Grais) = D, (Emi-nere > wir (L) e
keZ™\{0}

M
= 313 ()1 e

kezn j=0
G(k
+ OM<(1 +|s]) MH Z (\k\2+1‘) £+)2‘M+2)/2>

Z( 8/2> 1Y F\(G;a; s + 25)

J=0
/ G(k
+ O [(1+ [s)M T (14 2 o) |- (83)
kezZm

In addition we have uniformly in s = o + i € C with 0 > —N,

! |G (k)| ! k|9 1
> e K > e K > et < 100
kezn kezn kezn

So and Lemma for ¢ = 1 imply that Lemma is also true for ¢+ = 0. This completes
the proof of Lemma

7.2.3 Proof of item (i.2) of Theorem

Since a € R™\ Z", there exists ig € {1,...,n} with a;, € Z. So d(a.e;,,Z) = d(a;,,Z) > 0.
Therefore, a satisfies the assumption of Lemma with v = €;,. Thus, for all N € N,
s+ fu(s) = Fy(P;a;s) has a holomorphic continuation to the half-plane {R(s) > —N}. It
follows, by letting N — oo, that s — f,(s) has a holomorphic continuation to the whole
complex plane C.

7.2.4 Proof of item (iii) of Theorem

Let © € M, (R), (&); € {—1,0,1}7 and b € S(Z" x Z"). We assume that © is a badly ap-
proximable matrix. Set Z :={l = (l,...,l;) € (Z")? | Y;eil; =0} and P € C[Xy,..., X,)]
of degree d > 0.

It is easy to see that for 0 > n + d:

e’ ibg !
> O] YR e mt <p S D] Y e <pe Y (b))
le(Zn)Q\z kezn le(zn)a\z kezZn le(Zn)a\z
< +o00.

So

)= X b foy ()= X b)) Y HEEO Kon
kezn

le(Zn)a\Z le(Zn)a\zZ

converges absolutely in the half plane {R(s) > n + d}.
Moreover with the notations of Lemma [7.6] we have for all s = o + i € C with o > n + d:

gol(s)= > b(l)fezisili(s): > b(l)Fo(P;@ZigilBS) (84)

le(zr)n\z le(zr)nz
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But © is badly approximable, so there exists u € Z™ and 9, ¢ > 0 such
lg."Ou —m| > c(1+]q))°, Vge Z"\ {0}, Ym € Z.
We deduce that VI € (Z")?\ Z,

It follows that there exists u € Z™, 6 > 0 and ¢ > 0 such that
Vie ()2, d((©Y &il)uZ) > c(l+]I)7. (85)

Therefore, for any l € (Z™)1\ Z, the vector a = © Y, g;l; verifies the assumption of Lemma
with the same u. Moreover § and c in are also independent on .

We fix now N € N. Lemma implies that there exist positive constants Cy := Cy(P, N, u),
By := B;(P, N,u)and Ay := Ao(P, N, u) such that for alll € (Z")I\Z, s — Fy(P;0 Y, €il;;s)
extends holomorphically to the half plane {R(s) > —N} and verifies in it the bound

P@Zelms <Gy +]s)® d((©F el z) .

This and imply that for any compact set K included in the half plane {R(s) > —N},
there exist two constants C' := C(P, N, ¢,d,u, K) and D := D(P, N, ¢, d,u) (independent on
[ € (Z")\ Z) such that

Vs € K and VI € (Z")1\ 2, Fo(P;0 Y eili;s) <O (1+]I)". (86)

It follows that s = 37 (znya\ z b(1) Fo(P; © X2;€:l5; ) has a holomorphic continuation to the
half plane {R(s) > —N}.
This and ( imply that s — go(s) = Xieznynz b(1) fo T c,1,(8) has a holomorphic contin-
uation to {R(s) > —N}. Since N is an arbitrary integer, by letting N — oo, it follows that
s +— go(s) has a holomorphic continuation to the whole complex plane C which completes
the proof of the theorem.

Remark 7.8. By equation , we see that a Diophantine condition is sufficient to get
Lemma [7.6.  Our Diophantine condition appears also (in equivalent form) in Connes [23,
Prop. 49] (see Remark 4.2 below). The following heuristic argument shows that our condition
seems to be necessary in order to get the result of Theorem [7.5:

For simplicity we assume n =1 (but the argument extends easily to any n).
Let 0 € R\ Q. We know that for any l € Z \ {0},

I 2miflk as—1/2 s
goi(s) :== Z = T1ss ['(3) ha(l — s) where hg(s Z \91+k\3'

keZ I( 2 ) kEZ

So, for any («) € S(Z), the existence of meromorphic continuation of go(s) == Y1z @ goi(s)
is equivalent to the existence of meromorphic continuation of

Z ar ho(s Z ay Z |0H—k|

leZ leZ keZ

So, for at least one og € R, we must have |0lf]lf‘|00 = O(1) uniformly in k,l € Z*.
It follows that for any (a;) € S(Z), 101 + k| > |ay|/7° uniformly in k,1 € Z*. Therefore,

our Diophantine condition seems to be necessary.
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7.2.5 Commutation between sum and residue

Let p € N. Recall that S((Z")P) is the set of the Schwartz sequences on (Z”)p In other words,

b € S((Z")?) if and only if for all 7 € No, (14 |li|* + -+ |1,[*)" [b(ly, -+ - ,1,)]? is bounded on
(Z™)P. We note that if @ € R[X}, -, X,,,] is a polynomial, (a;) € S(Z") b e S(Z™) and
¢ a real-valued function, then [ := (Iy,--- ,1,) — a(l) b(—1,) Q(1) €Y is a Schwartz sequence

n (Z")P, where

a(l) :==ay(ly)- - ap<lp)a
L=l +...+1.

In the following, we will use several times the fact that for any (k,l) € (Z")? such that
k # 0 and k # —I, we have

1 2k.L+ |12 (87)
k12 k2 kPR + 2
Lemma 7.9. There exists a polynomial P € R[Xy,---,X,]| of degree 4p and with positive
coefficients such that for any k € Z", and | := (ly,--- 1) € (Z")" such that k # 0 and
k£ —I; for all 1 < i <p, the following holds:
1 1
= =~— <
k4 L[ k452~ (kPP

Proof. Let’s fix i such that 1 <14 < p. Using two times (87)), Cauchy—Schwarz inequality and
the fact that |k + ;|2 > 1, we get

Pl 1))

2kl [l [2)?
[kl 4 A+ |2

1 2lk|[l:| 2
mESEEt TRt
7+7|Z\|+<L+L)A
= |k[® TR k[* " (k[ /)1
Since |k| > 1, and |} < |;|*if 1 < j < 4, we find
1 5 5 p 4
i S R [0 < gl (14 A1) < g (1 42T D)),
-1 <« )
ke ly |2 k12 = (R | (1 +4(Zj=1 1451) ) ’

Taking P(Xy,---,X,) = 5p(1 + 4( §:1Xj)4)p now gives the result. O

+ gl + |l

Lemma 7.10. Let b € S((Z")?), p € N, P; € R[Xy, -+, X,] be a homogeneous polynomial
function of degree j, k € Z™, 1 := (ly,--- ,1,) € (Z")?, r € Ny, ¢ be a real-valued function on
7" x (Z")P and
b(1) Pj(k) e*hD
Bl 4 02 ke + D2
with h(s,k,l) := 0 if, for k # 0, one of the denominators is zero.
For all s € C such that R(s) > n+ j —r — 2p, the series

/
H(s):=Y_ (k,l)e(Z")P+1h(S’ )

is absolutely summable. In particular,

SIS ws kD= 3 S his k1)

kezn le(zm)p le(zm)p keZn

h(s k1) ==
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Proof. Let s =0 + it € C such that 0 > n+ j —r — 2p. By Lemma [7.9| we get, for k # 0,
(s, k, D] < [b(1) By(k)| k]~ P(1),

where P(l) := P(|li],--- ,|l,]) and P is a polynomial of degree 4p with positive coefficients.
Thus, |h(s,k,1)] < F(I) G(k) where F(I) := |b(l)| P(I) and G(k) := |P;(k)||k|""~°"2. The
summability of 33,¢zny» F(1) is implied by the fact that b € S((Z")?). The summability of
> keznG(k) is a consequence of the fact that o > n+ j —r — 2p. Finally, as a product of two
summable series, >, ,F'(I)G(k) is a summable series, which proves that >, ;h(s, k, 1) is also
absolutely summable. O

Definition 7.11. Let [ be a function on D X (Z™)P where D is an open neighborhood of 0
in C.
We say that f satisfies (H1) if and only if there exists p > 0 such that

(1) for any l, s — f(s,1) extends as a holomorphic function on U,, where U, is the
open disk of center 0 and radius p,

(@) if |H (-, D)l , = SUPse, [H(s,1)|, the series Yyegny |H (- 1), is summable.
We say that f satisfies (H2) if and only if there exists p > 0 such that

(1) for any l, s — f(s,l) extends as a holomorphic function on U, — {0},

(i3) for any & such that 0 < 0 < p, the series > ezny |[H(-,1) is summable,
where || (), = SUPs. iy [H (s, )]

Hoo,é,p

Remark 7.12. Note that (H1) implies (H2). Moreover, if f satisfies (H1) (resp. (H2)
for p > 0, then it is straightforward to check that f : s v 3 cznp f(5,1) extends as an
holomorphic function on U, (resp. on U, \ {0}).

Corollary 7.13. With the same notations of Lemma[7.10, suppose that r+2p—j > n, then,
the function H(s,l) := > jcpnh(s, k1) satisfies (H1).

Proof. (i) Let’s fix p > 0 such that p < r+2p — j —n. Since r +2p — j > n, U, is inside
the half-plane of absolute convergence of the series defined by H(s,1). Thus, s — H(s,l) is
holomorphic on U,.

(i7) Since “k\_s < |k|? for all s € U, and k € Z" \ {0}, we get as in the above proof

[A(s, k. D] < [b(0) Py(R)] k7472 P(l], - [1]).

Since p < r+2p — j — n, the series Y ). czn|Pj(k)||k|7"T7~% is summable.
Thus, [|H(,1)|,, < K F(l) where K := 3,/|P;(k)||k|7"+~* < co. We have already
seen that the series Y-, F(I) is summable, so we get the result. O

We note that if f and g both satisfy (H1) (or (H2)), then so does f + g. In the following,
we will use the equivalence relation

f~g<= f— g satisfies (H1).

Lemma 7.14. Let f and g be two functions on D X (Z™)P where D is an open neighborhood
of 0 in C, such that f ~ g and such that g satisfies (H2). Then

Res > f(s,0)= > Resg(s.l).

~ o le(znyp le(zn)p
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Proof. Since f ~ g, f satisfies (H2) for a certain p > 0. Let’s fix n such that 0 < n < p and
define (), as the circle of center 0 and radius 7. We have

E{:eos g(s, 1) = Res f(s,0) = 5= fcn f(s,l)ds = /Iu(t, l)dt .

where I = [0, 2] and u(t,1) := 5=ne” f(ne,1). The fact that f satisfies (H2) entails that the
series Yic(znye || f (-, 1| ¢, 18 summable. Thus, since [lu(-, 1), = = f (-, Dlloo,c, - the series
Sie@ny |u(-,1)]o is summable, so, [; 3czny u(t,1)dt = 3 (znyp [;u(t, [)dt which gives the
result. ]
7.3 Computation of residues of zeta functions

Since, we will have to compute residues of series, let us introduce the following

Definition 7.15.
¢(s) := Z n-’°,
n=1
/ —s
Zn(s) = > k7%,

kEZ"
/ kpl e kpn
<P17...,pn<5) = Z % i fOT’ Di € N7
vz K

where ((s) is the Riemann zeta function (see [56] or [36]).

By the symmetry k — —k, it is clear that these functions (,,, . ,, all vanish for odd values
of Di-

Let us now compute (... 0,1,,0--,0,1,,0--,0(5) in terms of Z,(s):
Since Co,... 0,1,,0--,0,1;,0-,0(5) = Ai(8) 05, exchanging the components k; and kj;, we get

CO,"' ,0,1;,0-+-,0,1;,0--- ,0(8) = % Zn(S - 2)

Similarly,

IOk3kS 1
Zzn ks¥8 = n(n—l)Z s+4)— = 1ZZn |k|6+8

but it is difficult to write explicitly (p, . ,,.(s) in terms of Z,(s — 4) and other Z,(s —m)
when at least four indices p; are non zero.

When all p; are even, ;.. ,, () i P(k)
geneous polynomial of degree p; + - -- 4 p,,. Theorem now gives us the following

Proposition 7.16. (,, . ,. has a meromorphic extension to the whole plane with a unique
pole at n+ py + - -+ + pn. This pole is simple and the residue at this pole is

F(p1+1) F(pn+1)
_ 2
8:n+§§§m+pn Cprroopn (8) = 2 F(n-i-pl-; +pn) (88)
when all p; are even or this residue is zero otherwise.
In particular, for n = 2,
!/ klk/‘
R@(}S Z |k\5+34 = 0j T, (89)
T kez?



and forn =4,

2

ij?a

Om

k|l;€|fjrl§m - 61]5lm + 6115jm + 5zm(5]l) (90)

ez4
ez4
Proof. Equation follows from Theorem ([7.1))

R,eS Cpl DPn (8) - /k:eS”l k:]ljl o k‘lan dS(k)

s=n+pi+-+pn 7

and standard formulae (see for instance [100, VIIL,1;22]). Equation is a straightforward
consequence of Equation . Equation can be checked for the cases i = j # [ = m and
1=j=1l=m. ]

Remark that Z,(s) is an Epstein zeta-function which is associated to the quadratic form
q(r) := 23 + ... + 22, so Z, satisfies the following functional equation

Zn(s) = 7 (02 — 5/2)T(s/2) ™! Zn(n — ).

Since 7 ~/2'(n/2 — 5/2)T(s/2)~! = 0 for any negative even integer n and Z,(s) is mero-
morphic on C with only one pole at s = n with residue 27™/2I'(n/2)~! according to previous
proposition, so we get Z,(0) = —1. We have proved that

13:808 Zn(s+n) =20"2T(n/2)71, (91)
Z,(0) = —1. (92)

There are many applications of Proposition for instance in (-regularization, multiplica-
tive anomalies or Casimir effect, see for instance [36].

7.4 Meromorphic continuation of a class of zeta functions

Let n,q €N, ¢>2 and p= (p1,...,p,1) € NJ L.
Set I :={i | p; # 0} and assume that I # () and

I = {Oé = (ai)iel | \V/Z < ] o; = (OéiJ, .. "ai7p7j) c Ngz} = HN%;Z

i€l

We will use in the sequel also the following notations:

-forx = (z1,...,2) € Rl recall that |z]; = |z1|+- - -+]|ay] and |2 = (/2 + - - + 2,
- for all o = ()ier € Z = [Lies NG

ali = X Jails = X3 Jasyl and (2) =TT (42) = TTTT ().

el i€l j=1 el el j=1
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7.4.1 A family of polynomials

In this paragraph we define a family of polynomials which plays an important role later.
Consider first the variables:
- for Xy,..., X, weset X = (X4,...,X,);
- for any i =1,...,2q, we consider the variables Y;;,...,Y;, and set Y; := (Y;1,...,Y},)
and Y := (Y1,...,Ys,);
-for Y = (Y1,...,Ys,), weset for any 1 < j <gq, 17] =Y+ Y+ Y+ Yy
We define for all o = (;)ies € Z = [1;e; Ni' the polynomial

llﬂ1 (X, Y5) + |V[?). (93)

It is clear that P,(X,Y) € Z[X, Y], degx P, < |a|; and degy P, < 2|al;.
Let us fix a polynomial Q € R[X7,---, X,,] and note d := deg Q). For o € Z, we want to
expand P,(X,Y)Q(X) in homogeneous polynomials in X and Y so defining

L(a) :={B e NP | |8], — ds < 2|l and ds < |a|; +d}
where dg := Y7 3;, we set

("P)PAXY)QX) = > Cap XVP
BeL(a)

where ¢ 5 € R, Xf := X/'... X/ and Y? .= Yff“- Yg%ﬁfﬂ)". By definition, X” is a

homogeneous polynomial of degree in X equals to dg. We note

Mop(Y) = capY”.

7.4.2 Residues of a class of zeta functions

In this section we will prove the following result, used in Proposition for the computation
of the spectrum dimension of the noncommutative torus:

Theorem 7.17. (i) Let 5O be a badly approzimable matriz, and a € S((Z“)Qq). Then

q—1
Sl—>f(s) = Z a; ZI H‘k-i-l:'pi k’*SQ(k)eik.ez‘flj

le[(zr)a)2  keZr i=1

has a meromorphic continuation to the whole complex plane C with at most simple possible
poles at the points s = n + d + |ply — m where m € Ny.

(ii) Let m € Ny and set I(m) = { (c, 8) € T x N{™"™| 8 € L(a) where we have taken
m =2|aly —dg+d}. Then I(m) is a finite set and s = n+d+ |p|l1 —m is a pole of f if and

only if
m=Ya 3 Musl) [k ds) #0,

n—1
1€Z  (a,B)el(m ues

with Z :={l | Y¥11; =0} and the convention Y3 = 0. In that case s =n+d+ |p|y —m is a
simple pole of residue Res f(s)=C(f,m).

s=n+d+|pli—m
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In order to prove the theorem above we need the following

Lemma 7.18. For all N € N we have

q—1 _
II1k+0
=1

Pi Z (1/2) Po(kl) 4 ON(’kllpllf(NH)/?)

a ‘k|2\a|1—lp\1
CM:(ai)ieIEHieI{O ,,,,, N}Pi

uniformly in k € Z™ and | € (Z™)* such that |k| > U(l) := 36 (Z?E}#q 1))

Proof. Fori=1,...,q — 1, we have uniformly in k € Z" and [ € (Z")*? with |k| > U(l),

\2<k,7i>+|l7\2

u@) 1
FE S T S o (94)
In that case,
~ ~ ~ o\1/2 Tha2\1/2 > ;
e+ G| = (Jk2+ 20k 1) + [GF) 7 = || (1+ 2B = 5™ (12) L Pi(h, 1)

u=0
where for allt=1,...,¢— 1 and for all u € Ny,
Pi(k, 1) := (20k, ;) + 1%)

u
I

with the convention P¢(k,1) := 1.
In particular P(k,l) € Z[k,l], deg, P! < u and deg; P° < 2u. Inequality implies
that for alli =1,...,¢ — 1 and for all u € N,

L [Pk, D] < (2y/1K])

|k‘2u

uniformly in k& € Z" and [ € (Z™)?? such that |k| > U(I).
Let N € N. We deduce from the previous that for any & € Z™ and [ € (Z")*? with
|k| > U(l) and for all i = 1,...,¢ — 1, we have

N

kbl = 30 (3 i Patk, D+ O( 32 H1(2) 2ylkD ™)
u= u>
N
= 2230 (lz/f) gt Pu(k, 1) + ON(W)-

It follows that for any N € N, we have uniformly in k& € Z" and [ € (Z™)* with |k| > U(l)
and for all i € I,

Ik +1;

P= > (2) o= P (R, 1) + On (o=, )

where P! (k1) =TI}L, P. (k1) for all a; = (41, ..., 05p,) € {0,...,N}? and

J

LIk -+ = > (") et Palk, 1) + ON(W)
el a:(ai)eniel{o ..... N}Pi
where Py (k,1) = Tlies PL, (k,1) = Ties [0 P2, (K, D). 0
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Proof of Theorem[7.17 (i) Alln, ¢, p= (p1,...,p4-1) and @ € S ((Z")*) are fixed as above
and we define formally for any [ € (Z")%

PQ(k) O 2l [k| . (95)

F(l,s) : Z Hlk‘+l

kezn i=1

Thus, still formally,

= Y aF (96)

le(zZn)2a

It is clear that F'(I, s) converges absolutely in the half plane {o = R(s) > n+d+ |p|:} where
d = deg Q.

Let N € N. Lemma implies that for any [ € (Z")* and for s € C such that
o >n+|[ph +d,

> TL I+ T QU e TS
k|<U(@) i=1
+ > (1@ > mlja(k,l)@(kn““@zl’j+GN(l,s)-

a:(ai)iGIeH¢61{0 ..... N}pi |k|>U(I)

where s — Gy/(, s) is a holomorphic function in the half-plane Dy := {o > n+d-+|p|; — 5}
and verifies in it the bound Gy(l,s) <y, 1 uniformly in I.
It follows that

F(Z,S) = Z Ha(l78> +RN(Z7S)7 (97)
a=(a;)ier€] [, {0,....N}Pi
where
/ X a;.
Ho(l,s) = 3" (*2) e Palk, 1) Q(k) €O 200,
kezn
qg—1 ~ ' .
RN(Z,S) = Z ' H |k+lz plQ(/{;) eZk'921lj |k|—3
k|<U@) i=1

-y > (/) el Q) €020 + Gl ).

KI<UM)  a=(ai)ier€] [;c {0, N}Pi

In particular there exists A(N) > 0 such that s — Ry(l,s) extends holomorphically to the
half-plane Dy and verifies in it the bound Ry (I, s) <y, 1 -+ |I[|*®) uniformly in /.
Let us note formally
S) = Z al H
1

Equation and Ry(l,s) <y, 1+ |I[A™) imply that

f(s) ~n > ha(s), (98)

a:(ai)iEIEH»Le[{O ..... N}Pi

where ~y means modulo a holomorphic function in Dy.
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Recall the decomposition (1/2) P (k1) Q(k) = Yper(a) Ma,s(l) k¥ and we decompose sim-

[0}

llarly ha(s) = Xser(a) ha,s(s)-
Theorem [7.5{ now implies that for all & = (a;)ier € [Tic{0,..., N}? and 5 € L(«),

- the map s — h, g(s) has a meromorphic continuation to the whole complex plane C
with only one simple possible pole at s = n + |p|; — 2|a|; + dg,

- the residue at this point is equal to

hapls) = S Musll) [~ w'ds 99
el alea, "0 ) l;al ) Jgn 95 () (99)
where Z := {l € (Z)")** : >11; = 0}. If the right hand side is zero, hq g(s) is holomorphic
on C.

By (98)), we deduce therefore that f(s) has a meromorphic continuation on the halfplane
Dy, with only simple possible poles in the set {n + |p|; + k¥ : —2N|p|; < k < d}. Taking
now N — oo yields the result.

(ii) Let m € Ng and set I(m) = { (o, 8) € TN | 3 € L(a) and m = 2|l —dg+d }.
If (o, B) € I(m), then |a|; < m and |5]; < 3m +d, so I(m) is finite.

With a chosen N such that 2N|p|; + d > m, we get by and

Res  fls)=Sa Y M) / W? dS(u) = C(f,m)

— — n—1
s=n+d+|pl1—m €2 (a,8)el(m) ucS

with the convention Yy = 0. Thus, n+d+|p|s —m is a pole of f if and only if C(f,m) # 0.00
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8 The noncommutative torus

The aim of this section is to compute the spectral action of the noncommutative torus.
After the basic definitions, the result is presented in Theorem [8.13] Due to a fundamental
appearance of small divisors, the number theory is involved via a Diophantine condition. As a
consequence, the result which essentially says that the spectral action of the noncommutative
torus coincide with the action of the ordinary torus (up few constants) is awfully technical
and use the machinery of Section[7] A bunch of proofs are not given, but the essential lemmas
are here: they show to the reader how life can be hard in noncommutative geometry!
Reference: [37].

8.1 Definition of the nc-torus

Let C*°(Tg) be the smooth noncommutative n-torus associated to a non-zero skew-symmetric
deformation matrix © € M, (R). It was introduced by Rieffel [95] and Connes [22] to gener-
alize the n-torus T".
This means that C*°(Tg) is the algebra generated by n unitaries u;, i = 1,...,n subject to
the relations

upu; = e Oy, (100)

and with Schwartz coefficients: an element a € C*(Tg) can be written as a = Y ,czn ax Uy,
where {a;} € S(Z") with the Weyl elements defined by

i

Uy, 1= e 2mxXk b g fon

n

k € 7™, relation ((100]) reads
UU, = e 2*91 0, and UU, = e *®1 U, U, (101)

where x is the matrix restriction of © to its upper triangular part. Thus unitary operators
Uy satisfy

U,;k = U_k and [Uk, Ul] = -2 Sln(%k@l) Uk:—H-

Let 7 be the trace on C*(Tg) defined by

7'( Z ak Uk) = qg

kezZm

and H, be the GNS Hilbert space obtained by completion of C*°(Tg) with respect of the
norm induced by the scalar product

(a,b) == 7(a*b).

On H, = { ke ar Uy | {ax}r € I*(Z™) }, we consider the left and right regular repre-
sentations of C*°(Tg) by bounded operators, that we denote respectively by L(.) and R(.).

Let also 9, p € {1,...,n}, be the n (pairwise commuting) canonical derivations, defined
by

81



We need to fix notations: let

Ag := C*®(Tg) acting on H := H, @ C*"

with n = 2m or n = 2m + 1 (i.e., m = | 5] is the integer part of 7), the square integrable

sections of the trivial spin bundle over T".
Each element of Ag is represented on ‘H as L(a) ® 1am. The Tomita conjugation

Jo(a) :=a"

satisfies [Jo, d,] = 0 and we define
J = Jo X OO

where Cj is an operator on C2”. The Dirac-like operator is given by
D := —id, ®@", (103)

where we use hermitian Dirac matrices . It is defined and symmetric on the dense subset
of H given by C=(Tg) ® C*". We still note D its selfadjoint extension. This implies

C()’Ya = —€’YQCO, (104)

and
D U, ®e; =k, U, ®@~"e;,

where (e;) is the canonical basis of C2". Moreover, C2 = 41,m depending on the parity of
m. Finally, one introduces the chirality, which in the even case is

X =id @ (=)t
This yields a spectral triple:

Theorem 8.1. The 5-tuple (Ao, H, D, J,x) is a real reqular spectral triple of dimension n.
It satisfies the finiteness and orientability conditions of Definition[5.2. It is n-summable and
its KO-dimension is also n.

We do not give a proof since most of its arguments will be emphasized in this section; see
however [25]50] for a specific proof.
For instance, we prove in Proposition that this triple has simple dimension spectrum

when © is badly approximable (see Definition [7.4)).
The perturbed Dirac operator V,, D V,* by the unitary

V, = (L(u) ® 12m)J(L(U) %y 12m)<]_17

defined for every unitary u € A, uu* = u*u = Uy, must satisfy condition JD = ¢DJ (which is
equivalent to H being endowed with a structure of Ag-bimodule). This yields the necessity
of a symmetrized covariant Dirac operator

Dy:=D+A+eJAJ!
since Vy, DV} = Drw)@1,m[D,Lw*)o1,m]: 0 fact, for a € Ag, using JoL(a)Jy™! = R(a*), we get
eJ(L(a) ® 70‘) J 1= —R(a*) @+~
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and that the representation L and the anti-representation R are C-linear, commute and

satisfy
[0a, L(a)] = L(0qa), [0a, R(a)] = R(Jaa).

This induces some covariance property for the Dirac operator: one checks that for all k € Z™,
L(U) @ L3n[D, L(U}) © 1on] = 1® (—k,1"), (105)
so with (104), we get Uy[D,Uj] + €JU,[D,Uy]J ™ = 0 and
Vi, DV, = D = DL,)01,m [D,LU;)@1m] - (106)
Moreover, we get the gauge transformation (see Lemma :
VuDAV, =D, a (107)
where the gauged transform one-form of A is
Yu(A) = u[D,u*] + uvAu*, (108)
with the shorthand L(u)®1sm — u. As a consequence, the spectral action is gauge invariant:
S(Da, [, A) = S(Dy,a), [, A).
An arbitrary selfadjoint one-form A € Q},(A), can be written as
A= L(—iA,) @7, Ay = —A}, € Ao, (109)

thus
Dy = —i (0o + L(Aa) — R(4s)) @77, (110)

Defining

A, = L(A,) — R(A,),
we get D4 = —g*192 (6, + Ao, ) (0ay + Any) ® Lom — 10010, ® 79192 where

Q102

YOI 1= (M — 02y,
QOHOLQ = [6011 + A()ﬂ’éaQ + AO@] = L(Fawlz) - R(FalaQ)

with
Foioy =00, (Any) — 60y (Aa,) + [Aays Aas)- (111)
In summary,
D2 — oo (5a1 +L(Ag,) — R(Aal)) (602 +L(Ay,) - R(Aa2)> © 1o

_% (L(Faw@) - R(Falaz)) ® Y. (112)
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8.2 Kernels and dimension spectrum
We now compute the kernel of the perturbed Dirac operator:

Proposition 8.2. (i) KerD = Uy ® C*", so dimKer D = 2™,
(ii) For any selfadjoint one-form A, Ker D C Ker Dy.
(iii) For any unitary u € A, Ker D, a) = V,, Ker Dy.

Proof. (i) Let ¢ = Y ;¢ Uy ® e; € KerD. Thus, 0 = D% = Yy, ¢ k| Uy ® e; which
entails that g ;|k|> = 0 for any k € Z™ and 1 < j < 2™. The result follows.
(i) Let ¢ € KerD. So, ¢ = Uy ® v with v € C*" and from (110, we get

Dap =D+ (A+ eJAT N = (A+ eJAT ) = —i[An, Ul @ y*v =0

since Uy is the unit of the algebra, which proves that ) € Ker Dy.
(77i) This is a direct consequence of ({107)). O

Corollary 8.3. Let A be a selfadjoint one-form. Then KerDy = KerD in the following
cases:

(1)) A=A, = L(u) ® 1om[D, L(u*) ® lom| when u is a unitary in A.

(ii) ||All < 3.

(iii) The matriz 5-© has only integral coefficients.

Proof. (i) This follows from previous result because V,,(Uy ® v) = Uy @ v for any v € C*".
(i) Let v = > j ¢y Uy @ €5 be in Ker Dy (so oy |ex;|? < 00) and ¢ := 335 ¢, Uy ® e;.
Thus ¢ ;=1 — ¢ € Ker Dy since ¢ € Ker D C Ker D4 and

1> criha U@yl = [[DY|* = || = (A+ eJAT |2 < 4lIA[P[[']17 < [[9]]*.

0#keZ™, j

Defining X, := 3o kaVas X7 = Yo |ka|? 1am is invertible and the vectors { U, @ Xye; Yozrezn,
are orthogonal in H, so

S (k) el < X el
0£kEZn,j o 0#kEZ", j
which is possible only if ¢, ; = 0, Vk, j that is ¢/ =0 and ) = ¢ € Ker D.
(43i) This is a consequence of the fact that the algebra is commutative, thus the arguments

of apply and A = 0. ]

Note that if A, := A, +eJA,J~", then by (105), Ay, = 0 for all k € Z" and || Ay, || = |k,
but for an arbitrary unitary u € A, A, # 0 so Dy, # D.

Naturally the above result is also a direct consequence of the fact that the eigenspace of
an isolated eigenvalue of an operator is not modified by small perturbations. However, it is
interesting to compute the last result directly to emphasize the difficulty of the general case:

Let ¥ = Y jczn1<jcom €1,j Ui ® €5 € Ker Dy, 80 Yjezn 1< j<am |¢1j]> < 00. We have to show
that ¢ € Ker D that is ¢;; = 0 when [ # 0.

Taking the scalar product of (U ® e;| with

0= 'DAQ/J = Z Cl,j(laUl — i[Aa, Ul]) X ’yo‘ej,

Lo, j
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we obtain

0= e ; (1% — i(Ur, [Aa, U) ) (e, 7%€;)-
lLa,j
If Ay =201 oy Uy @~ with { aqy }1 € S(Z™), note that [U;, Uy, = —2i sin(%l.@m) Uiim and

<Uk, [Aa, Ul]> = Z aa7l/(—2i sin(%l’.@l)(Uk, Ul’+l> = -2 Aoy e—1 sm(%k@l)

l'ezn
Thus
n 2™
0= 33 (I — 20051 sin(35.00)) (e;,7%;), Yk € Z", Vi, 1 <i<2m (113)
lezn a=1j=1

We conjecture that Ker D = Ker D4 at least for generic ©s: the constraints ((113)) should
imply ¢;; = 0 for all j and all [ # 0 meaning ¢ € KerD. When i@ has only integer
coefficients, the sin part of these constraints disappears giving the result.

We will use freely the notation about the difference between D and D.

Lemma 8.4. If ;-0 is badly approzimable (see Deﬁm’tz’onm), Sp(COO(T’é),’H, D) =7 and

all these poles are simple.
Proof. Let B € D(A) and p € Ny. Suppose that B is of the form
B = (lrbTqufl ’D‘pr*larflbrfl ... DR ]D\plalbl

where r € N, a; € A, b; € JAJ ™, q;,pi € No. We note a; =: 3y a;;, U and b; =: 3, b;, Uy
With the shorthand ky,, ,, = Ky, -k, and y#0Ha =1yt we get

DU D ayhy Uy @ €5 = D a1,,by Uy UpUp [k 41y + 1P (k4 1y + 1)y, @ Y H 016

I,

which gives, after r iterations,

r—1
BUk®€j = Z'dlblUlT s UllUkUl’l ce Ul;‘ H |]€+ll+l;

L i=1

where a; := ayy, -+ - a,, and by = bi, - bray.
Let us note F,(k,1,I') :== TI\—} |k—|—lAZ-—|—lA§|pi(k:—|-lAi+ B i and oF o= B .7%#(111,
Thus, with the shortcut

~. meaning modulo a constant function towards the variable s,

Tr (B|D|_2p_s> ~e Z, Z aby T(U_kUlr U UpUy -+ - Ul;) }T‘;‘(ﬂi) Tr(+*).
koLl

Since UZT tet UllUk = UkUlr ce Ulleiiqui@k we get

il =iy " 1;.0k
T(U_kUlr"'UllUkUl/l"'Ul’r) :5Z:li+l;,0€¢( )6 Zl

85



where ¢ is a real valued function. Thus,

oy i / e—izrli.(-)k
Tr (B|D| %) ~ Z > ey g by TR T ()

Ll

~e fu( ) Tr(+%).
The function f,(s) can be decomposed as a linear combination of zeta function of type
described in Theorem (or, if r = 1 or all the p; are zero, in Theorem . Thus,

s+—Tr (B|D|*2p*5) has only poles in Z and each pole is simple. Finally, by linearity, we get
the result. ]

The dimension spectrum of the noncommutative torus is simple:

Proposition 8.5. (i) If i@ is badly approximable, the spectrum dimension of the spectral
triple (C’OO(T%),'H,D) is equal to the set {m —k : k € Ny} and all these poles are simple.
(it) Cp(0) =0
Proof. (i) Lemma [8.4 and Remark [5.9]
(i) Cp(5) = Liezn Cicjcom (Un® e, [D|Up @ ¢€)) = 2™ (Chegnprs +1) = 2"(Zu(s) +1).
By , we get the result. [

We have computed (p(0) relatively easily but the main difficulty of the present Section
is precisely to calculate (p, (0).

8.3 Noncommutative integral computations

We fix a self-adjoint one-form A on the noncommutative torus of dimension n.

Proposition 8.6. If i@ is badly approximable, then the first elements of the spectral action
expansion are given by

FIDaI™ = f 1D = 2mtmn /),
][ DA™ = 0 for k odd.

][ |DA’_n+2 =0

We need a few technical lemmas:

Lemma 8.7. On the noncommutative torus, for any t € R,
][211)|D|—t - ][DA|D|—t —0.
Proof. Using notations of , we have
Te(ADID| ™) ~e 32,37 (Vs ® ¢, =ikl ™[ Ao, U] © 77"e;)
~e =i Tr(y ") D2 Kl (U, [Aa, Ui]) = 0
since (Ug, [Aa, Ug]) = 0. Similarly
Tr(DA|D| %) ~ Z Z (U ® ej, k|~ Z ay 28in B2 (1 + k) Upsr, ® v#9%€;)
~e 2 Tr(yH %) ZZaalsmk@l (4 k), |k (Uk, Upgr) = 0. O

86



Any element h in the algebra generated by A and [D,.A] can be written as a linear
combination of terms of the form a;?* ---a,P" where a; are elements of A or [D, A]. Such a
term can be written as a series b := }> a1,a,1, " * Qga,1,Un - Ui, @ Y21 - - - y* where a; o, are
Schwartz sequences and when a; =: }-, ;U; € A, we set a;4,; = a;; with v* = 1. We define

L(b) = T(Zlal,ahll <o aq7aq7qul1 . Ulq> Tr(,yal . 70“1)‘
By linearity, L is defined as a linear form on the whole algebra generated by A and [D, A].

Lemma 8.8. If h is an element of the algebra generated by A and [D, A],

Tr (h|D]*) ~e L(h) Zu(s).
In particular, Tr (h|D|’S) has at most one pole at s = n.

Proof. We get with b of the form >" ay o, 1, * Agag1, Ui -+ - Ui, @ v -+ -y,

Tr (b’D‘is) ~e Z /<Uk7 Z A1,00q,0p " aq,anqul e Uquk> Tr(7a1 te ’yaq)‘k‘is
l

kezm

~e T Gan g Ggagt,Un -+ - Uty) Te(y™ -+ 4%9) Z(s) = L(b) Zn(s).
!

The results follows now from linearity of the trace. ]

Lemma 8.9. If ;-0O is badly approzimable, the function s — Tr (5JAJ*1A|D|*S) extends
meromorphically on the whole plane with only one possible pole at s = n. Moreover, this pole
is simple and

Res Tr (€JAJ*1A]D\*S) = ag0ad 2" 72T (n/2) 7

Proof. With A = L(—iA,) ® 7%, we get eJAJ ! = R(iA,) ® v, and by multiplication
eJAJ 1A = R(Ap)L(A,) ® vPy*. Thus,

Tr (eJATAID|™) ~e 3 (Ur, AaUrAp) k| Tr(v79%)

keZm
’ .
~e Do > aagag €O k|7 Tr(yP®)
kezn 1
“Q:2WL:£:/ :E:(thaileikcn|k|_s'
kezn 1

Theorem (i4) entails that Y jcpm 3 aaya®, €®© k|~ extends meromorphically on the
whole plane C with only one possible pole at s = n. Moreover, this pole is simple and we
have

/ y —
E{:eg Z Z Ao, 0% kOl k|8 = Ao 0 QG l}:es Zn(8).

kezr 1
Equation now gives the result. ]

Lemma 8.10. If i@ is badly approximable, then for anyt € R,
][X\Drt = Otm 2m+1( = a1 0%+ aap ag) 212 (n/2)7".
1
where X = AD + DA+ A? and A =: —i Yo aa U @ .

87



Proof. By Lemma , we get £ X|D|~* = Res,—o Tr(A2|D|~**). Since A and eJAJ ! com-
mute, we have A2 = A% + JA2J ! +2eJAJ 1A, Thus,

Tr(A?%|D|*7t) = Te(A%|D| %) + Te(JA2J DY) + 2 Tr(e JAT TA|D| 7).
Since |D| and J commute, we have with Lemma [8.8]
Tr (A% D]7*7") ~o 2L(A%) Zy(s +t) + 2Tx (eJAJ T AID| ).
Thus Lemma [8.9| entails that Tr(A2|D|~*"*) is holomorphic at 0 if t # n. When t = n,
1}:608 Tr (ﬁ2|D|_5_t> = 2m+1( — ; Ao, 02) + Qg ag ) 212 T (n/2)71, (114)

which gives the result. [
Lemma 8.11. If i@ s badly approzimable, then

][ADAD\DVH - —”7*2][ A D"
Proof. With DJ = ¢JD, we get
]lADADyDr?—” _ 2][ ADAD|D| 2" + 2]1 cJAJ'DAD|D| 2"
Let us first compute f ADAD|D|~27". We have, with A =: —iL(A,)®7* = —i > a0, U;@7%,
Tr (ADAD|D|™72") ~e =373 tay 1y oy 1y (U kU, Up, Up) 40502 Te(704)

kUl

where y&# 1= y@2H2y@~l1 - Thus,

J ADADIDI " = =5 10, a0, e (5 ) To(yo).
! - k

We have also, with e JAJ ™! = iR(A,) ® 7,

Tr (eJAJ 7 DADID[727") ~e 373" a1y Gy 1y (U Uy, UpUs, ) 2555102 Tr(y4),
k11,02

which gives

][EJAJ 1,Z)‘/41)|l)| = = Qay,00a1,0 RGS (Z |]]:‘u51+162?n) Tr(’}/a’u).

Thus,

AT A —2-n ! kuk a
%][ ADAD|D| ™" = (G0 0tay0 — X Gan-100,1) Rese—o (32 abia) Tr(y#).
! k

With S |,’j|“;+’;#fn = 6“;“2 Zn(s4+n) and C, := Res,—g Z,(s +n) = 272 (n/2)~" we obtain
%][ ADAD|D| ™" = (A05,000,.0 — I Gay —10ay 1) & Tr(72294917,).
I
Since Tr(y*2y#~y*1y,) = 2™(2 — n)0*>*, we get

n

A A —2—n m @ a) Cn(n—
%][ADAD|D] 2= (g + Y o af ) 20D
1
Equation (114]) now proves the lemma. ]

88



Lemma 8.12. If -0 is badly approzimable, then for any P € ¥,(A) and g € N, q odd,
#PID 00—,

Proof. There exist B € D;(A) and p € Ny such that P = BD~? + R where R is in OP~ 1.
As a consequence, f P|D|~("=9 = § B|D|™"~%+4_ Assume B = a,b,D%'a,_1b,_; - -- D%ab;
where r € N, a; € A, b; € JAJ ', ¢; € N. If we prove that f B|D|™""?™4 = (, then the
general case will follow by linearity. We note a; =: >>;a,;, U; and b; =: >7; b;; U;. With the
shorthand £ =k, -k, and yHHa = APyt we get,

1154, [75 0

D‘“alblUk X €; = Z ai i, blvlll UllUkUl’l (k + ll + lll),uh/iql X ’}/ul’uql €;

Il

Ha;

which gives, after iteration,
e r—1 ~ 5 r—1 r—1 1,1
BU,® ej = ZalblUlr - UllUk:Ul/l R Ulﬁ. H(k; + 1 + li)#ivﬂé ® ,yﬂl Har_1 L r)//"’l?“‘ﬂ €
LU i=1 !
where @ = ayy, - - - a,y, andby = by - by Let’s note Q(k,1,1') = Nk 41+ 2)#37%_
and v 1= 7“71'71’“5:1 -+ .M Thus,

!/ -~ 7 /
][B D77 = Res > > b T(UkUs, - U UgUy, -+ Uy ) G285 Te(y4).
k Ll

Since Ulr cee UllUk = UkUlr s Ulleiizili@k, we get
T(U—kUlr Uy UpUy -+ Ul;) _ 52; et 0 PiPL) =i > 1Ok
where ¢ is a real valued function. Thus,

—n—2 / id(1.1 o~ k‘,l,l’ —iZIliAek
L BIDI 270 = Res 37 S 600 5y gy Qb i
™ ko

=: Res f,.(s) Tr(v").

We decompose Q,(k,[,1") as a sum >;_ o My, ,(I,1') Qn,u(k) where @y, is a homogeneous
polynomial in (kq,--- , k,) and M}, ,(I,!') is a polynomial in ((l1)1, o (), ()1 (l;)n>

Similarly, we decompose f,(s) as >;_o fnu(s). Theorem (i7) entails that fj ,(s)
extends meromorphically to the whole complex plane C with only one possible pole for
s+2p+n—q=n+d where d := deg Qp . In other words, if d +q —2p # 0, fiu(s) is
holomorphic at s = 0. Suppose now d + ¢ — 2p = 0 (note that this implies that d is odd,
since ¢ is odd by hypothesis), then, by Theorem (74)

l;{:eos Jru(s) =V Qnp(u) dS(u)

ueSn—1

where V i= Y ey My, (1, 1) €24 5410 G bpand Z = {1,I' : 7_,1; = 0}. Since d is
odd, Qpu(—u) = —Qpu(v) and [,cgn-1 Qnp(uw) dS(u) = 0. Thus, R_eos fru(s) =0 in any case,
which gives the result. ]
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As we have seen, the crucial point of the preceding lemma is the decomposition of the
numerator of the series f,(s) as polynomials in k. This has been possible because we restricted
our pseudodifferential operators to ¥y (A).

Proof of Proposition[8.6. The top element follows from Proposition and according to

©1).

][‘Drn Res Tr(]D] - n)—QMResZ (s+n)= 2mtian/2

[(n/2)
For the second equality, we get from Lemmas [8.8 and [5.23]

Res Cp, (s -y Z hn =k, p) f €™ (V) £ (V)| D),

p=1ry,- ,rp=0

Corollary and Lemma imply that f&™(Y)---e™(Y)|D|~ ™% = 0, which gives the
result.
Last equality follows from Lemma and Corollary [5.28] ]

8.4 The spectral action

Here is the main result of this section.

Theorem 8.13. Consider the noncommutative torus (C’OO(T%),H,D) of dimension n € N

where i@ is a real n X n real skew-symmetric badly approximable matriz, and a selfadjoint
one-form A = L(—iA,) @ v*. Then, the full spectral action of Da =D + A+ eJAJ !
(i) forn =2,

S(Da, £, A) = 47 fo A* + O(A7?),

(i) forn =4,
S(Da, f,A) =872 fy A* —22° £(0) 7(F,, F*™) + O(A72),

(iii) More generally, in
DA?f A an k Cn— k: Anik+O<A71)7

Cn—2(A) =0, ¢,—k(A) =0 for k odd. In particular, co(A) = 0 when n is odd.

This result (for n = 4) has also been obtained in [42] using the heat kernel method.
It is however interesting to get the result via direct computations of since it shows
how this formula is efficient. As we will see, the computation of all the noncommutative
integrals require a lot of technical steps. One of the main points, namely to isolate where the
Diophantine condition on © is assumed, is outlined here.
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Remark 8.14. Note that all terms must be gauge invariants, namely, according to (108),
invariant by Ay — Yu(As) = uAgu® + udy(u*). A particular case is u = Uy where
Urdo(Uf) = —ikoUy.

In the same way, note that there is no contradiction with the commutative case where, for
any selfadjoint one-form A, Da =D (so A is equivalent to 0!), since we assume in Theorem
that © is badly approximable, so A cannot be commutative.

Conjecture 8.15. The constant term of the spectral action of Dy on the noncommutative
n-torus is proportional to the constant term of the spectral action of D+ A on the commutative
n-torus.

Remark 8.16. The appearance of a Diophantine condition for © has been characterized

in dimension 2 by Connes [23, Prop. 49] where in this case, © = 9(81 é) with 0 € R.

In fact, the Hochschild cohomology H(Ae, Ae*) satisfies dim H’(Ae, As*) = 2 (or 1) for
j=1 (orj =2)if and only if the irrational number 6 satisfies a Diophantine condition like
11— e2™0|=1 = O(n*) for some k.

Recall that when the matriz © is quite irrational (the lattice generated by its columns is
dense after translation by Z", see [50, Def. 12.8]), then the C*-algebra generated by Ae is
simple.

Remark 8.17. It is possible to generalize above theorem to the case D = —igt, o, @ 7
instead of (103|) when g is a positive definite constant matriz. The formulae in Theorem
are still valid, up to obvious modifications due to volume variation.

8.5 Computations of f

In order to get this theorem, let us prove a few technical lemmas.

We suppose from now on that © is a skew-symmetric matrix in M,,(R). No other hy-
pothesis is assumed for ©, except when it is explicitly stated.

When A is a selfadjoint one-form, we define forn € N, g e N, 2 <g<nando € {—,+}1

AT := ADD?,
A" = eJAJ'DD2,
A% = A% .. AT

Lemma 8.18. We have for any g € N,

][(AD*)q - ][(ADD*)CI . ][ A,

G’E{-l-,— }q
Proof. Since Py € OP~>°, D~' = DD~2 mod OP~> and §(AD")? = {(ADD2)4. O

Lemma 8.19. Let A be a selfadjoint one-form, n € N and ¢ € N with 2 < q < n and

o€ {—,+}9. Then
][A" - ][A*".
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Definition 8.20. In [15] has been introduced the vanishing tadpole hypothesis:
][AD—l — 0, for all A € QL (A). (115)

By the following lemma, this condition is satisfied for the noncommutative torus.

Lemma 8.21. Let n € N, A = L(—iA,) @ v = =i 1czn 0o, Ui @ 7%, An € Ao, where
{ans }1 € S(Z™), be a hermitian one-form. Then,

(i) f AD~1 = f(eJAJ YYD 4 =0 forp>0and1l < q<n (case p=q =1 is tadpole
hypothesis. )

(ii) If i@ is badly-approximable, then f BD™1 =0 for 1 < g <n and any B in the algebra
generated by A, [D, A]l, JAJ™ and J[D, AlJ L.

Proof. (i) Let us compute
][ AP(eJAT VY D,
With A = L(—iA,) ® v* and eJAJ ' = R(iA,) @ v*, we get
AP = L(—iAal) ce L(—iAap) ® Yt .y

and /
(eJAJ ) = R(iAy) - - R(iAq,) @ 7% - A

We note Gq; := oy, ** * a1, Since

L(—iAa,)+ L(—iAa,)R(iAy) - R(1Ay Uy = ()P i3 Gay oy Uy -+ Uy, UpUy, -+ Ul

LU

and A
Uy - U, Uy = Uy, -+ - Uy, i, L)-Ok.

we get, with
Ui = Uy - U U, - Uy,

1y o ROl by
g%a,@/(sﬂ k>l7 l) = Z \k1\8+2qq aalaa/ N

(07

,ya,o/,u = ,yOél Sy szo‘ll ceery pfyul ...f}/“q7

AP(eJAT W D™D Uy ® €; ~e ()P % Guaar (8, k, LU) UpUpy @ v e

LU

Thus, f AP(eJAJ )P’ D™1 = Res f(s) where

f(s):="Tr (A(eJAJ ' D79 D| ™)
~e (—i)P i Z /<Uk & €4, Zgu,a,a’(s’ kLD ULy ® VQ’QI’%Q

kezmn Ll
P T (5 e 5. 1) T
kezZm LU
PSS G (s, kL) T (U”,) ()
kezm Ll
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It is straightforward to check that the series Y=} ; 1 gpa0r (5, k,1,1') T(Uu/) is absolutely sum-
mable if R(s) > R for a R > 0. Thus, we can exchange the summation on k and [, ', which
gives

() moe (=07 30 S g (5., 1) 7 (U ) Te(y”),

LU kezn

If we suppose now that p’ = 0, we see that,

/k; a.o!
f _Z ZZ \k\s+2q alézp loTr( Hoc )

Il kezn

which is, by Proposition [7.16] analytic at 0. In particular, for p = ¢ = 1, we see that
fAD~! =0, i.e. the vanishing tadpole hypothesis is satisfied. Similarly, if we suppose p = 0,
we get /
f(s Z Z kr)gl|s+24 Ao, 0 10 Tr(’}/u’mal)
U kezn i=

which is holomorphic at 0.

(77) Adapting the proof of Lemma to our setting (taking ¢; = 0, and adding gamma
matrices components), we see that

B ok —iy 1Ok
F B =R S S b i ()

Ly

where (28 i a complicated product of gamma matrices. By Theorem (17), since we
suppose here that 3 @ is badly approximable, this residue is 0. [

8.5.1 Even dimensional case

Corollary 8.22. Same hypothesis as in Lemma|8.21,.
(i) Case n = 2:

][AQD*Q = b, dnT(AAY) .
(7t) Case n = 4: with the shorthand 0., . = 01 1Oz + OprpisOpopis + Ot piaOpopis s
][A‘ID @ = gu Tor (Aoq . Aa4> Tr(y™ -yl ),
Proof. (i,ii) The same computation as in Lemma [8.21] (i) (with p’ = 0, p = ¢ = n) gives

][AHD_n B ij()s(_i)n( > ) T ( Z GogUy - Us, ) Tr(y™ o q2natt o qin)

kez™

and the result follows from Proposition [7.16] ]

We will use few notations:
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Forn € N, ¢ > 2, [ :

= (L, 1) € (ZMY, a = (ar, - ag) € {1,---,n}9,
ke Z"\{0}, o € {— +}7, (a:)i<

ly:=— Z Li, A= (=1)1 H Oj,  Qayg = Qagy - Qo ly
1<j<q¢—-1 Jj=1l.4q
¢U(k,l) = Z (O'j —O'q) k’@l]+ Z 0 (ll + ...+lj_1).@lj,
1<j<q—1 2<j<q—-1

(8 k l) L kul(k“l‘ll)ug~~(k+ll+~~+lq71)uq
= TR A PR g1 [P

with the convention Y 5.;<, 1 = 0 when ¢ = 2, and g,(s,k,l) = 0 whenever l; = —k for a
1<i<qg—1.

Lemma 8.23. Let A = L(—iA,) @ Y = =1 1czn Gay Uy @ ¥ where A, = — A% € Ao and
{ans }r € S(Z™), with n € N, be a hermitian one-form, and let 2 < q<n, o € {—,+}9.
Then, § A° = R_eos f(s) where

f(S) = Z Z I)\J e%¢0(k’l) g,u(57 ka l) aa,l Tr(’Yaq’Yuq e ’yalﬁyul)'
le(zm)a—1 kelr

In the following, we will use the shorthand

Lemma 8.24. Suppose n = 4. Then, with the same hypothesis of Lemma[8.23,

() AP = AP =0 3 augg a1 (100 = 07 2).

lez4

(i) — % ][(Aﬂg = —%][(A’) =4c Z oy 1y —1p Af' Gay gy SID L.-Oly @l2 3.

1,74

(iii) i][(AJ“)‘l = i][(A_)‘1 =2C Y oy —ly—ly—ly Qas s A7) 072 Sin 11'6(122“3) sin 2:9ls

l,eZ4

(iv) Suppose —@ badly approximable. Then the crossed terms in (AT + A™)7 vanish: if
C' is the set of all o€ {—,+}7 with 2 < g < 4, such that there exist i,j satisfying o; # o,
we have Y ,cc £A7 = 0.

Lemma 8.25. Suppose n = 4 and %@ badly approximable. For any self-adjoint one-form
A,
CDA(O) - gD(O) = _CT(Fm,azFalaz)'

Proof. By and Lemma we get

Coa(0) = ol(0) = 5 Y far
=1 oef{+,—}
By Lemma [8.24] (iv), we see that the crossed terms all vanish. Thus, with Lemma [8.19] we

get
e ][ (AT, (116)

£~

(o, (0) = Cp(0) = 23"

q=1
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By definition,
oqocg - Z (aag k koq Qo k kag) Uk + Z Qo k Aoyl [Uk> Ul]

k,1
Z [ Aoy ke kal — Qqq k kaz) -2 Z Aoy k—1 Qo 1 Sln(@)} Uk
k !
Thus
T(Fane, £ = Z Z “aa%k kay = Gay g Kay) — 2 Z Aoy k—1' Qo ! sin(k'T@l/)}
al,az=1 kez4 VezA
{(%27—’“ kay = Gay,—k Kay) — 2 Z Aoy, —k—1” Qag,l” sin(#)]

17ez*

One checks that the term in a? of 7(Fy,a, F*'*?) corresponds to the term (AT)? given by
Lemma [8.24. For ¢ = 2, this is

—2 Z Qay,l Aag,—1 (la1laz - 5a1a2|l|2)'
lEZ‘l,O&l,ag
For ¢ = 3, we compute the crossed terms:
7 Z aa2 k kal @al,k ka2> G(I:} G?Q (Uk[Uk/, l] + [Uk/, Ul]Uk>,
kK L

which gives the following a3-term in 7(F,,q, F*1%?)
.0l [
—8 " ag—ty—1 ap' Qg g, Sin L2,
l;

For ¢ = 4, this is

a1 a2 11.9(la+13) _: 15.0l3
—42%1 U —la—13 Gan iy Ay, Q7,7 SIN 5 sin 27

which corresponds to the term f(AT)*. We get finally,
3 b
q=1
Equations (116]) and (117)) yield the result. O
Lemma 8.26. Suppose n = 2. Then, with the same hypothesis as in Lemma
(i) fh?=f@a=o
(i) Suppose i@ badly approzimable. Then

][A+A— _ ][A—A+ — 0.

Lemma 8.27. Suppose n = 2 and %@ badly approrimable. Then, for any self-adjoint one-
form A,

FOANT = —57(Fuy 0 F202). (117)

(p4(0) = ¢p(0) =0

Proof. As in Lemma we use and Lemma so the result follows from Lemma
3. 201 O]
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8.5.2 0Odd dimensional case

Lemma 8.28. Suppose n odd and %@ badly approximable. Then for any self-adjoint one-
form A and o € {—,+}? with 2 < g <mn,

Far=o.
Proof. Since A7 € ¥y (A), Lemma with k = n gives the result. O

Corollary 8.29. With the same hypothesis of Lemma (p,(0) —(p(0) =0.

Proof. As in Lemma we use and Lemma so the result follows from Lemma
3,28 [

8.6 Proof of the main result
Proof of Theorem[8.13.. (i) By and Proposition [8.6, we get
S(Da, f,A) = 4f2 A + f(0)(p,(0) + O(A™?),

where fo = %fg"’ f(t)dt. By Lemma , (p,(0) = ¢p(0) = 0 and from Proposition ,
(p(0) =0, so we get the result.

(¢4) Similarly, S(Da, f,A) = 8 fs A* + £(0) (p,(0) + O(A™?) with fy = 3 [5° f(t) tdt.
Lemma implies that (p,(0) — (p(0) = —c7(F, F*) and Proposition yields the
equality ¢p,(0) = —c7(F,, F*) and the result.

(#43) is a direct consequence of (74), Propositions [8.5] 8.6, and Corollary [8.29] [

8.7 Beyond Diophantine equation

This section is an attempt to understand what happens if © is ‘in between’ rational numbers
and “Diophantine numbers”. Consider the simplest case: T? with

0 -1
ouo(17).
To proceed, we need some results from number theory [8]:

Definition 8.30. Let f : Ro; — Ry be a continuous function such that x — x? f(x) is
non-increasing. Consider the set

F(f)={0€R : |0g—p| <qflq) for infinitely many rational numbers £ }.

The elements of F(f) are termed f-approximable.

Note that we cannot expect the above estimate to be valid for all rational numbers % since

for all irrational numbers 6, the set of fractional values of (A¢),>1 is dense in [0, 1].

Theorem 8.31. There exists an uncountable family of real numbers 0/(2mw) which are f-
approzimable but not cf-approrimable for any 0 < ¢ < 1.
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See [8, Exercise 1.5] for a proof.
Let us choose

fl@) = (2mz)Te™,

and fix a constant ¢ < 1. Let us pick a 6 which is f-approximable, but not ¢f-approximable.
Consider now g(t) := Tr (anJ_1 e_tDQ). It is shown in [42] that, by tuning a,b € Ag, it is
possible make the difference g(t) — ¢(¢)piopn (of g(t) and its value if we suppose that 6 is a
Diophantine number) of arbitrary order in t.

This shows how subtle can be the computation of spectral action!
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9 The non-compact case

9.1 The matter is not only technical

When a Riemannian spin manifold M is non-compact, the Dirac operator, which exists as
a selfadjoint extension when M is (geodesically) complete has no more a compact resolvent:
its spectrum is not discrete but is R ( |47, Theorem 7.2.1] and similar results for hyperbolic
spaces [47, p. 106].)

To see what appends, let us consider for instance the flat space M = R? and the Hilbert
space H = L*(R%). Then the operator f(x)g(—iV) is formally given on %, ¢ in appropriate
domains by

W (@) 9(=iV) ) = [ f@)6(x) (99) (x) da.

For k € Z4, let ;. be the characteristic function of the unit cube in R? with center at & and
define for p,q > 0

(L) = 111 15,0 = (5 1 xel)) " < oo}

where | g|, := (fRd lg(x)P dac)l/p is the usual norm of LP(RY).

Theorem 9.1. Birman-Solomjak.

(i) If f,g € KP(L2(]R‘1)) for 1 <p <2, then f(x)g(—iV) is in the Schatten class LP and
1/ () g(=iV)Il, < ¢ [ £l 9]l

(i) If f,g are non zero, then f(x) g(—iV) € LY(H) if and only f and g are in ¢* (H))

For a proof, see |[102, Chapter 4].
This shows that even if g(z) = e *’, the heat kernel e "2 is never trace-class since f = 1 is
not in ¢! (LQ(]Rd)).

Thus, to cover at least the non-compact manifold case, Definition has to be improved:

Definition 9.2. A non-compact spectral triple (A, H, D) is the data of an involutive algebra
A with a faithful representation ™ on a Hilbert space H, a preferred unitization A of A and
a selfadjoint operator D such that

-a(D — N7 is compact for alla € A and \ ¢ SpD.

- [D,7(a)] is bounded for any a € A.

All definitions of regularity, finiteness and orientation have to be modified with A instead of
A, see also [9].

In the first constraint of this definition we recover a certain discreteness which, with a = 1,
is the compact case (the algebra can have a unit). This matter is not only technical since
now there is a deeper intertwining of the choice of the algebra A and the operator D to get
a spectral triple. Moreover, a tentative of modification of D is quite often forbidden by the
second constraint.

The case of non-compact spin manifold has been considered by Rennie [91-93]. This has
been improved in [40] which studied the Moyal plane. Actually, a compactification of this
plane is the noncommutative torus!
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9.2 The Moyal product

Reference: [40].

For any finite dimension k, let © be a real skewsymmetric k£ X k matrix, let s - ¢ denote
the usual scalar product on Euclidean R¥ and let S(R¥) be the space of complex Schwartz
functions on R¥. One defines, for f, h € S(R¥), the corresponding Moyal or twisted product:

frxo h (2m)~ / flz — t0u) hz +t) e ™t d*udt. (118)

In Euclidean field theory, the entries of © have the dimensions of an area. Because O is
skewsymmetric, complex conjugation reverses the product: (f xg h)* = h* xg f*.

Assume © to be nondegenerate, that is to say, o(s,t) := s- Ot to be symplectic. This
implies even dimension, k¥ = 2N. We note that ©~! is also skewsymmetric; let # > 0 be
defined by 62V := det ©. Then formula (118)) may be rewritten as

fxe h(x) = (70)2N / Flz+s)h(z+1t)e 20 2Ng i?N¢, (119)

This form is very familiar from phase-space quantum mechanics, where R?"V is parametri-
zed by N conjugate pairs of position and momentum variables, and the entries of © have
the dimensions of an action; one then selects © = hS := h (_?N v ) Indeed, the product
* (or rather, its commutator) was introduced in that context by Moyal [82], using a series
development in powers of A whose first nontrivial term gives the Poisson bracket; later, it
was rewritten in the above integral form. These are actually oscillatory integrals, of which

Moyal’s series development,

Frugte) = 3 (#)"4 L) e (a) (120)

al
aeN2N Oz

is an asymptotic expansion. The first integral form (118)) of the Moyal product was exploited
by Rieffel in a remarkable monograph [96], who made it the starting point for a more general
deformation theory of C*-algebras.

With the choice © = S made, the Moyal product can also be written

f*@g( 7T9 QN//f (z—y)-S(x—2) d2Nyd2N (121)

Of course, our definitions make sense only under certain hypotheses on f and g [49,/108§].

Lemma 9.3. [49] Let f,g € S(R®*N). Then

(i) f*,9 € S(R*Y).

(ii) *, is a bilinear associative product on S(R*V). Moreover, complex conjugation of func-
tions f +— f* is an involution for x,.

(iii) Let j =1,2,...,2N. The Leibniz rule is satisfied:

B af

Jg
T%(f*eg) D

Ou;

So*e g+ f* (122)
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(iv) Pointwise multiplication by any coordinate x; obeys

— () g — L0y dg
a(sx)*0g_('xjf) 0d 29f 98(S$)j (123)

J

2;(f*,9) = f*,(z;9) + 2

(v) The product has the tracial property:
(2 9) = g [ Frog@) o = e [ gx, f@) Ve = e [ f@) g(@) Ve

(vi) Let L 52%9(]“) be the left multiplication g — fx,9. Then limgy L} g(x) = f(x) g(x),
for x € R™.

Property (vi) is a consequence of the distributional identity

lifél ekel@te — (2m)k5(a)d(b),

for a,b € R¥; convergence takes place in the standard topology [100] of S(R?"). To sim-
plify notation, we put S := S(R?") and let &' := §'(R?*") be the dual space of tempered
distributions. In view of (vi), we may denote by L} the pointwise product by f.

Theorem 9.4. [49] Ay := (S,*,) is a nonunital associative, involutive Fréchet algebra with
a jointly continuous product and a distinguished faithful trace.

Definition 9.5. The algebra Ay has a natural basis of eigenvectors fp, of the harmonic
oscillator, indexed by m,n € NV If

Hy =Y} +xafy) forl=1,...,N and H:=H +Hy+ -+ Hy,
then the f,.. diagonalize these harmonic oscillator Hamiltonians:

Hl*gfmn = 0<ml + %)fmna

FrnxoHy = 0(ng + 1) frn. (124)
They may be defined by
fon = o (@)%, foox,a”, (125)
where foo is the Gaussian function foo(z) := oNe=2H/9 " and the annihilation and creation
functions respectively are
ay = %(zl +ixieny) and af = %(:pl —iT14N). (126)
One finds that a™ := af* ... a\N = ai®"x, - *,a"".

Proposition 9.6. [49, p. 877] The algebra (S,*,) has the (nonunique) factorization prop-
erty: for all h € S there exist f,g € S such that h = fx,g.

Lemma 9.7. [49,108] Let f,g € L*(R*N). Then
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(i) For 6 #0, fx,g lies in L*(R?*N). Moreover, fx,q is uniformly continuous.

(ii) *, is a bilinear associative product on L*(R*N). The complex conjugation of functions
f = [ is an involution for x,.

(iii) The linear functional f — [ f(x)dz on S extends to + ,o(R?N) := L*(R*N)x, L*(R?Y),
and the product has the tracial property:

(f. g)=(m0) /f*g )&z = (n0)” /g*f )d*Nz = (n0)~ /f z) V.

(iv) limgyo L g(x) = f(x) g(x) almost everywhere on R*N.

Definition 9.8. Let Ay :={T € 8’ : Tx,g € L*(R*N) for all g € L*(R*N) }, provided with
the operator norm ||L%(T)lop := sup{ [|T*,9ll2/lgll2 : 0 # g € L*(R*N) }.
Obuviously Ay = S — Ay. But Ay is not dense in Ag.

Note that Gog C Ag. This is clear from the following estimate.

Lemma 9.9. [49] If f,g € L*(R*Y), then fx,g € L*(R*N) and || L}]lop < (270) 2| f|l2-

Proof. Expand f = 32, CoonQmn and g = 32, ) dyn Qi With respect to the orthonormal
basis {um } := (270) ™/ 2{ fmm} of L2(R?N). Then

||f* 9||2 = (270) -2

> <Z Crmn nl> fmz

m,l

(276) NZ\CmJI Z!dkzl2 27T9) NHfllzﬂgllz,

on applying the Cauchy—Schwarz inequality. ]

Proposition 9.10. [108] (4, ||-|lep) is a unital C*-algebra of operators on L*(R*N), iso-
morphic to L(L*(RN)) and including L*(R?*N). Moreover, there is a continuous injection of
x-algebras Ay — Ay, but Ag is not dense in Ay.

Proposition 9.11. Ay is a (nonunital) Fréchet pre-C*-algebra.

Proof. We adapt the argument for the commutative case in [50, p. 135]. To show that Ay
is stable under the holomorphic functional calculus, we need only check that if f € Ay
and 1 + f is invertible in AY with inverse 1 + g, then the quasi-inverse g of f must lie in
Ag. From f+ g+ fx,g = 0, we obtain fx,f + g%,f + fx,9%,f = 0, and it is enough to
show that fx,g%,f € Ajp, since the previous relation then implies gx,f € Ap, and then
g=—f—gx, | € Ay also.

Now, Ay C G_,¢ for any » > N [108, p. 886]. Since f € Gsptr N Gy, for s,t arbitrary
and p, q positive, we conclude that fx,gx,f € Gspirx,G_r0%,Gqt C Gsi; as S = s 1er Yst, the
proof is complete. O

Lemma 9.12. If f € S, then L? is a reqularizing WDO.
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Proof. From ([118]), one at once sees that left Moyal multiplication by f is the pseudodiffer-
ential operator on R* with symbol f(z — fo) Clearly Lfc extends to a continuous linear
map from C®(R?")" — &' to C*(R*Y). The lemma also follows from the inequality

070 (2 — §5€)| < Crap(1+ |11,
valid for all o, 3 € N2/ any compact K C R?", and any d € R, since f € S. O

Remark 9.13. Unlike for the case of a compact manifold, reqularizing YDOs are not nec-
essarily compact operators!

9.3 The preferred unitization of the Schwartz Moyal algebra

Definition 9.14. Following Schwartz, we denote B := Oq, the space of smooth functions
bounded together with all derivatives.
A unitization of Ay is given by the algebra Ay := (B,*,). The inclusion of Ay in B is not
dense, but this is not needed. A, contains the constant functions and the plane waves, but
no nonconstant polynomials and no imaginary-quadratic exponentials, such as e**1¥2 in the
case N =1 (we will see later the pertinence of this).

Since B is a unital x-algebra with the Moyal product,

Proposition 9.15. Ay is a unital Fréchet pre-C*-algebra.

An advantage of Ay is that the covering relation of the noncommutative plane to the NC
torus is made transparent. To wit, the smooth noncommutative torus algebra C*°(T%") seen
in Section [8.1{can be embedded in B as periodic functions (with a fixed period parallelogram).
This is in fact a Hopf algebra homomorphism: recall that C>(T%") is a cotriangular Hopf
algebra by exploiting the integral form of (a periodic version of) the Moyal product.

We finally note the main reason for suitability of Ay, namely, that each [D, L°(f) @ 1ov]
lies in Ag ® Mon (C), for f € Ag and I the Dirac operator on RN,

9.4 The commutative case

When © = 0 the Moyal product is the ordinary product.

Let A be some appropriate subalgebra of C*°(M) and P be the Dirac operator, with
k equal to the ordinary dimension of the spin manifold M = R*. Let H be the space
of square-integrable spinors. Then [, f] = ID(f), just as in the unital case, and so the
boundedness of [D, A] is unproblematic. In order to check whether (A, H, I, x) is a spectral
triple, one first needs to determine whether products of the form f(|I)| + ¢)~* are compact
operators of Dixmier trace class, whose Dixmier trace is (a standard multiple of) [ f(z) d*z.
This compactness condition is guaranteed in the flat space case (taking A = S(R¥), say) by
celebrated estimates in scattering theory [102].

The summability condition is a bit tougher. The Cesaro summability theory of [3§]
establishes that, for a positive pseudodifferential operator H of order d, acting on spinors,
the spectral density asymptotically behaves as

dir(z, 7 \) ~ 2Lk/2J (WR@S HRA (= _)7

d(2m)k
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in the Cesaro sense. (If the operator is not positive, one uses the “four parts” argument.) In
our case, H = a(|IP| + ¢)7* is pseudodifferential of order —k, so

o/ 2Lk/2] Qp a(x) 1—2
as X — oo in the Cesaro sense; here ) is the hyper-area of the unit sphere in R¥. We
independently know that H is compact, so on integrating the spectral density over x and
over 0 < ) < )\, we get that the number of eigenvalues of H less than \ is

£/20 0, [ a(a) d*e
Ng(\) ~ 2 2’(“2{r)k( JENT as ) — oo

This holds in the ordinary asymptotic sense, and not merely the Cesaro sense, by the “sand-
wich” argument used in the proof of [38, Cor. 4.1]. So finally,

Lk/2] a(x)d*x
2 S?Q{r)k( 207 as mo— 00, (127)

)‘m(H) ~

and the Dixmier traceability of a(|]P| + )", plus the value of its trace, follow at once.

The rest is a long but almost trivial verification. For instance, J is the charge conjugation
operator on spinors; the algebra (B, %) is a suitable compactification; the domain H> consists
of the smooth spinors; and so on. Thus, we get the following

Theorem 9.16. The triple (S(R¥), L2(R*) @ C2** | ) on R* defines a noncompact com-
mutative geometry of spectral dimension k.

What about the non-flat case (of a spin manifold such that ) is selfadjoint)? Mainly
because the previous Cesaro summability argument is purely local, everything carries over,
if we choose for A the algebra of smooth and compactly supported functions. Of course, in
some contexts it may be useful to demand that M also has conic exits.

9.5 The Moyal plane

Let A = (S(R?Y),,), with preferred unitization A := (B(R*"), %,). The Hilbert space will
be H := L2(R2Y) ® C¥" of ordinary square-integrable spinors. The representation of A is
given by 7/: A — L(H) : f L? ® 1lyn, where L? acts on the “reduced” Hilbert space
H, = L*(R*N). In other words, if a € A and ¥ € H, to obtain 7%(a)¥ we just left Moyal
multiply ¥ by a componentwise.

This operator 7°( f) is bounded, since it acts diagonally on H and || L[| < (270)~"2| £l
was proved in Lemma Under this action, the elements of H get the lofty name of Moyal
SpInors.

The selfadjoint Dirac operator is not “deformed”: it will be the ordinary Euclidean Dirac
operator [) := —i~"d,, where the hermitian matrices v', ..., v*" satisfying {y*, 7"} = +2 "
irreducibly represent the Clifford algebra C£ R?M associated to (R?",n), with  the standard
Euclidean metric.

As a grading operator x we take the usual chirality associated to the Clifford algebra:

X = avi1 = Ly, ®@ (=) V9% 2N
N (41 2N Y2

vy =(-)* =1

The notation v,y is a nod to physicists’ 75. Thus x? = (1)
and xv* = —¥x.
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The real structure .J is chosen to be the usual charge conjugation operator for spinors on
R2V endowed with an Euclidean metric. Here, we only assume that J? = 41 according to
the “sign table” and that

J(Iy, @) = —ly, @ "

which guarantees the other requirements of the table. In general, in a given representation,
it can be written as

J :=CK, (128)

where C' denotes a suitable 2V x 2V unitary matrix and K means complex conjugation. An
important property of J is

J(LO(f) @ 1on) T = R'(f) @ Low, (129)

where R?(f) = Rf is the right Moyal multiplication by f; this follows from the antilinearity
of J and the reversal of the twisted product under complex conjugation.

Lemma [9.3(1ii) implies that [, 7%(f)] = —iL%(0,f)®~* =: 7(]D(f)) and this is bounded
for f € Ag = B(R?") just as in the commutative case.
9.5.1 The compactness condition

In this subsection and the next, the main tools are techniques developed some time ago for
scattering theory problems, as summarized in Simon’s booklet [102, Chap. 4]. We adopt the
convention that £°(H) := K(H), with ||A|le := [|A]lop-

Let g € L>°(R?"). We define the operator g(—iV) on H, as

g(=iV)Y = F (g Fo),

where F is the ordinary Fourier transform. More in detail, for ¥ in the correct domain,
g(=iV)(e) = (2m) 2 [[ <D geyuy) de ™y,

The inequality [[g(—iV)¥ll2 = [|F 7 gF¥]l2 < [lgllocl|t)]l2 entails that [|g(—iV)[le < [[g]loc-

Theorem 9.17. Let f € A and X\ ¢ spID. Then, if Rp(N) is the resolvent operator of 1D,
then @ (f) Rp(N) is compact.

Thanks to the first resolvent equation, Rp(A) = Rp(X') + (N — A)Rp(A)Rp(N'), we may
assume that A = ¢u with © € R*. The theorem will follow from a series of lemmas interesting
in themselves.

Lemma 9.18. If f € S and 0 # p € R, then
' (f)Rp(in) € KH) <= 7°(f)|Rplip)|* € K(H).

Proof. We know that L(f)* = L(f*). The “only if” part is obvious since Rp(iu) is a
bounded normal operator. Conversely, if 7°(f)|Rp(ip)|? is compact, then the operator
7 (f)|Rp (ipe)*7°(f*) is compact. Since an operator T' is compact if and only if 77" is
compact, the proof is complete. ]
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The usefulness of this lemma stems from the diagonal nature of the action of the operator
' (f)|Rp(ip)]* on H = H, @ C2": so in our arguments it is feasible to replace H by H..,
7%(f) by L%, and to use the scalar Laplacian —A := Z2N 82 instead of the square of the

Dirac operator ID°.

Lemma 9.19. When f,g € H,, L?c g(—iV) is a Hilbert-Schmidt operator such that, for all
real 0,

ILS g(=iV)l2 = 127 9(=iV)ll2 = 2m) =¥ || f2 [lg]l--

Proof. To prove that an operator A with integral kernel K 4 is Hilbert—Schmidt, it suffices to
check that [ |K4(z,y)|* dz dy is finite, and this will be equal to ||A|3 [102, Thm. 2.11]. So
we compute Ko g—iv). In view of Lemma [9.12}

(L°() g(=iV)0)(w) = s [[ £ = §5) g(€)uly) e PN Py,

Thus |
Kpo(p) g(-iv) (7, 9) 27r SIN /f g(é) et (@=v) 2N ¢

and [ |Kpo(p) g—ivy(2,y)|* dz dy is given by

e [ [ F(@ = $S9) () Fla = 55€) g(C) €9 N p @y PV P

= zzv/ [f(z =38P g @ wad®™ = 2m) V| [l lglz < 00. O

Remark 9.20. As a consequence, we get
I ll-lim LS g(—iV) = Ly g(~i9).
Lemma 9.21. If f € M, and g € L?(R*") with 2 < p < oo, then LY g(—iV) € LP(H,) and
ILS g(=iV)ll, < (2m) " NARRDG=NALZD | £y | g],.

Proof. The case p = 2 (with equality) is just the previous lemma. For p = oo, we esti-
mate [|L% g(=iV) o < (270) 2] | lglloc: since [[1% g(~iV) oo < | Z%]uc [lg(=i7) |, this
follows from Lemma and a previous remark.

Now use complex interpolation for 2 < p < oo. For that, we first note that we may
suppose g > 0: defining the function a with |a| = 1 and g = alg|, we see that

ILF 9(=iV)|[3 = Tr

="Tr

="Tr

="Tr

Lyg ( V)[?) = Te(g(=iV) L} LG g(—iV))
gl(=iV) a(=iV) L}. Ly a(— iV) 9/(=V))
a(—iV) |gl(=iV) L} LY |g(=iV) a(=iV))
L7 gl (=) ) = [IL% gl (=i V)12,

AAAA

and

1L} 9(=iV)lloe = 1L} a(=iV) [gl(=i V)]l = 1L} [g/(=iV) a(=iV)]|x
< 1L l9l(=iV) oo a(=iV)lloo = 1L |9 (=iV)|oc-
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Secondly, for any positive, bounded function g with compact support, we define the maps:
Fp:izw Lyg?(—iV): S={z€C|0< Rz <} = L(H,).

For all y € R, Fy(iy) = L} g"*(—iV) € L>(H,) by Lemma since g, being compactly
supported, lies in H,. Moreover, ||F,(iy)|le < (270)~N/2|| ]|

Also, by Lemma 19, Fy(3 +iy) € £2(%,) and [F(3 + ig)ll2 = (2m) | f]l2 g2
Then complex interpolation (see [90, Chap. 9] and [102]) yields F(z) € LY%(H,.), for all z
in the strip S. Moreover,

IE () llyme < IFO)1552 [ F(DI3™ = [|f[la(2m0) > (=272 (2)=2N%= | go/2) 302,
and applying this result at z = 1/p, we get for such g:
1L} g(=iV)l, = [F(1/p)ll, < (2m) N 2HRg= XU £, [ g]],-
We finish by using the density of compactly supported bounded functions in LP(R?*Y). [
Lemma 9.22. If f € S and 0 # p € R, then n°(f)|Rp(in)|* € LP for p > N.
Proof. We see that
w(F) [Rp (i) = (L) © L) (B — i) (D + i)™ = LY (~00, + 1) @ L.

So this operator acts diagonally on H, ® C?" and Lemma implies that

§V§V+U2

1/p
HL? (=070, + u2)*1H < (2m)~NW/2H1/p)g=N(1/2-1/p) ||f||2</ (dQNE)p> |
p

which is finite for p > N. ]

Proof of Theorem[9.17. By Lemma m, it was enough to prove that 7(f) |Rp(ip)[? is com-
pact for a nonzero real p. [

9.5.2 Spectral dimension of the Moyal planes
Theorem 9.23. The spectral dimension of the Moyal 2N -plane spectral triple is 2N .

We shall first establish existence properties.
Thanks to Lemmaand because [P, 7%(f)] = —iL?(D,f)®7", we see that 7 (f)([)*+&2) !
and [, 7(f)] (D* + €2)~" lie in LP(H) whenever p > N/I (we always assume ¢ > 0). In the
next lemma, we show that [|D|, 7%(f)] (I0* +&2)~" has the same property of summability; this
will become our main technical instrument for the subsection.

Lemma 9.24. If f € S and <1 < N, then [| D], x°(f)] (D* + &%)t € LP(H) forp > N/I.
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Proof. We use the following spectral identity for a positive operator A:

o0
A=1 A?  dp
™ Jo A2 /0

and another identity for any operators A, B and A ¢ sp A:

[B,(A— )1 = (A— N\ YA, BJ(A—- AL (130)

Hence, for any p > 0,
DL =101+ o0 = 2 [ )|
= [ (- ) 0P+ ) s
= 1 [7 e 01+ 02,7 (0] e VA (131)
[ b (7@ 0u1) = 22,0 879D + 2071

1
X ey VI AR

Sy

This implies that

12170 07+ )7 < 2 [ s (—7 @ 008) - 20(L°@u) @ 1)
+20[1P1 7 ()] ) qrasrs (B + )7, Vidn:

Thus, the proof reduces to show that for any f € S,

L[ Vs ™ (DP b (P + €97 vidn < oo. (132)

Since the Schatten p-norm is a symmetric norm, and since, as in the proof of Theorem[9.17]
only the reduced Hilbert space is affected, expression ((132)) is bounded by by

iuéuﬂ<¢H2P+uHW2ch+f2v2 () i 7 (a7 |, VI

<1 [a"0 7+ AR+ 0 7

(u+p

Thanks to Lemma [9.21] we can estimate the p-dependence of the last p-norm:
|7 ORI+ )+ )22 4 27072
< (2m) NORRPGNCZZUD £l (18] + )% + ) 2(1E? + €)Y
P

gC@ﬁng+py+m4pMWKF+grum

I
r
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with p~! = ¢! + r~! appropriately chosen, these integrals are finite for all ¢ > 2N and
r>2N/(2l —1); for [ = %, take r = 0o and ¢ = p. For such values,

[=" ORI+ 9 + )2 (P 4 )

0o 1/q
_ 1 2N —1
< C(p, 0, N; NI (1] +2) ’*1/2!\7«92#(/0 mmedR>

rt/a(d—n)

= O 0. N; I + )72 /0 =

NI = O (p, q, 0, N f) /AN,

Finally, the integral (132)) is less than

N/q

Cl(nq,@,N;f)/O e A,
which is finite for ¢ > 2N and p > N/I. This concludes the proof. ]
Lemma 9.25. If f € S, then 7°(f) (|| + &) 1 n?(f*) € L2VT(H).

Proof. This is an extension to the Moyal context of the renowned inequality by Cwikel [102].
As remarked before, it is possible to replace 492 by —A, ©(f) by Lfc and H by H,. Consider

g(=iV) := (V/—A + &)L, Since g is positive, it can be decomposed as g = 3,,c7 g, Where

g(z) if 2t < g(x) <27,
i) = {90 12 < 0(0)
0 otherwise.

For each n € Z, let A,, and B,, be the two operators

=Y Lig(—=iV) LS., Bn:=> Ligu(—iV) L.

k<n k>n

We estimate the uniform norm of the first part:

lAulloe < IZ512 |32 a(=i9)|_ < @x0) 1713 2 e

k<n k<n

< 2r0) "V fl22" = 2" ea (0, N ).

The trace norm of B,, can be computed using Lemma [9.19}

8.0k = (o iv)) 1|} = |1( S o -iv)) 2Hj=<zw>2N|rf\|§!\(;gk)l/2\\j
= (27) 2N\|fH2HngH (2r) 2N|\f!|22|\9k|!1

< (2m) 113 Z 19k llo0 {sUpPP(gk) T,

k>n

where v is the Lebesgue measure on R?Y. By definition, ||g||c < 2* and

v{supp(gr)} = v{z e R* : 28"t < g(2) <28} < v{z e R* | (Jo| + &)t > 2"}
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Therefore

1Balls < @m) 2V [ £I322Vey 3025020

k>n
< 7T72N Co Hf“% 2n(172N) —. 2n(172N) Cg(N; f),

where the second inequality follows because N > %

We can now estimate the mth singular value pu,, of B, (arranged in decreasing order
with multiplicity): [|Bulli = Y520 mk(Br). Note that, for m = 1,2,3,---, we get that
[Bulli > Z;cnz_ol f1(Bn) > m piy(By). Thus, pim(By,) < [[Bylim™ < 2n(1=2N) cym~!. Now
Fan’s inequality [102, Thm. 1.7] yields

pm (LG 9(=iV) L) = pm (A + Bp) < pa(Ap) + i (Bn)
< JApll + |1 Ballim™ < 2% ¢y + 202N e~

Given m, choose n € Z so that 2" < m~'/2N < 27*+1 Then

,um(L?g(—z'V) Lfc*) <eym VA 4oegmmUTNRN gL — e (0, N f) mT 2N
Therefore L} (vV—A+¢)~' L}. € L2N*(H,), and the statement of the lemma follows. O
Corollary 9.26. If f,g € S, then 7°(f) (|| + )t n%(g9) € L2V (H).
Proof. Consider ©?(f & ¢*) (|| + &) ' n?(f* & g) and 7°(f £ ig*) (|P| + &)L 7 (f* Fig). O
Corollary 9.27. Ifh € S, then 7°(h) (|P| +¢)~' € L2V (H).
Proof. Let h = f%,g. Then

' (h) (1P| + &)~ = 7" (f) (1P| + )7 7°(g) + 7°(f) [7"(9), (1P| + )",

and we obtain from the identity that

7 (h) (1P + &)™ = (f) (1P| + )7 7" (g) + 7°(f) (1P + &) 121, 7" (9)) (1P] + )7

By arguments similar to those of lemmata [9.21] and the last term belongs to LP for
p > N, and thus to £2V+. O

Boundedness of (|| + €)(]p* + £2)~'/? follows from elementary Fourier analysis. And so
the last corollary means that the spectral triple is “2N*-summable”. We have taken care of
the first assertion of the theorem. The next lemma is the last property of existence that we
need.

Lemma 9.28. If f € S, then n°(f)(| D] +¢)~2 and n°(f)(P* + &)~V are in L (H).

Proof. 1t suffices to prove that 7/(f)(|P]| + €)™ € L1F(H). We factorize f € S according
to Proposition [9.6] with the following notation:

= Jix, fo = frxg farx, Joz = fix, farx, fazik, faoo

=+ = frx,farky faarx, - %, faze21%, fa2.22-
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Therefore,

() (1P +e)N =7’ (£) (1P + )7 7 (f2) (1P| + )72
+ 1’ (f1) (P]+ )7 1Pl (£2)] (1] + )7, (133)
By Lemma 7 (f1) (|| + )"t € LP(H) whenever p > 2N; and by Lemma [9.24] the

term [|D|, 70 ( f )](HD| +¢)72V lies in L£9(H) for ¢ > 1. Hence, the last term on the right hand
side of equation (133)) lies in £'(H). We may write the following equivalence relation:

W) +) 2~ (F)D]+2) (F) (D] +) 2V,
where A ~ B for A, B € K(#H) means that A — B is trace-class. Thus,

T ()P + )Y ~ 7 (F)(P] + )7 (f) (|| + )72
=1’ (f)(|1 P+ &) a (fo) (D] + &) 77" (fao) (1D + £) 722
+ 7 (F)(P]+ )7 (fa) (1P] + &) DL 7" (fo2)] (1] + )72
~ ()P + &) n (fa) (|21 + ) 7'’ (fao) (IP] + )72V ~
~ 7 (F)D]+ &) 7 () (D] + &)~ 7° (fao) (1P| + €)1 (fanan) (1] 4 2) 7"
The second equivalence relation holds because 7 (f1)(|D|+¢€) ‘7% (for ) (|| 4¢) 7 € LP(H)

for p > N by Lemma [9.21} and [| |, 7%(fa2)](|P| + €)"2N ! € LIY(H) for ¢ > 2N/(2N — 1)
by Lemma [9.24] again. The other equivalences come from similar arguments. Corollary [9.26]

the Holder inequality (see [50, Prop. 7.16]) and the inclusion £'(H) C L' (H) finally yield
the result. ]

Now we go for the computation of the Dixmier trace. Using the regularized trace for a
UDO:
Trp(A) == (2n)~2N // (z,6) d*N¢ed*Nx,
|<A

the result can be conjectured because limy o, Tra(+)/log(A*Y) is heuristically linked with
the Dixmier trace, and the following computation:

lim gy Tea (2 (1) (D7 + e?>—N)
I T 2 —N 12N 2N
= Jim t oy [, 1@~ 8§50 (€ + )7 Ve
ZQJQVNQQWQJXN/]C dQN

This is precisely the same result of , in the commutative case, for k = 2N. However,
to establish it rigorously in the Moyal context requires a subtler strategy. We shall compute
the Dixmier trace of 7%(f) (Jp> + )~V as the residue of the ordinary trace of a related
meromorphic family of operators. In turn we are allowed to introduce the explicit symbol
formula that will establish measurability [25,50], too.

We seek first to verify that Ay has analytical dimension equal to 2N; that is, for f € Ay
the operator ¥(f) (D> + £2)~*/% is trace-class if Rz > 2N.
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Lemma 9.29. If f € S, then Lfc (]P2 + &2)72/% s trace-class for Rz > 2N, and
Te(LG (B + )% = 2m) 2 [[ f(@) (€2 + 2) 2 Ve Vo

Proof. 1f a(x,&) € K,(R*), for p < —k, is the symbol of a pseudodifferential operator A,
then the operator is trace-class and moreover

Tr A = (2m)~* / / a(z, €) d*z d¥e.

This is easily proved by taking a € S(R?) first and extending the resulting formula by
continuity.
In our case, the symbol formula for a product of ¥DOs yields, for p > N,

—3)ll
o[LY(-A+e) Pz, = 3 ( Oj Ogo[Lh)(x,) 020 [(—A + %) 77| (, )

aeNN
= o[Lf(z, ) o[(-A + %) 7| (, )
= [z =588 ([P + ).
Therefore, for p > N,
Tr(L(~A + %)) = (2n) 2N//f —85E) (JE + )P 2N e dPN
= @) [[ F@) (€ + ) 7 aVe da 0

We continue with a technical lemma, in the spirit of [93]. Consider the approximate unit
{ex}rken C Ac where ey := > 0<|n|<K fan. These ey are projectors with a natural ordering:
ex*,e, = e x,ex = ex for K < L, and they are local units for A..

Lemma 9.30. Let f € A.x. Then

() (D + )N = 2() (7 (ex) (D + )7 en) € LH).

Proof. For simplicity we use the notation e := e, and e, := ex,,. By the boundedness of
7(f), we may assume that f = e € A, k.
Because e, x,e = ex,e, = e, it is clear that

(@D +N) (1= 7(en)) = 7”(e) (P +N) M D7 (en)] (B + 1) (134)

Also, 7(e) [P, 7% (e,)] = [P, 7 (ex,e,)] — [, 7% (e)] 7°(en) = 0 because we have the relation
(D, 7%e)] 7%(e,) = [P, 7%(e)] for n > 1. We obtain

A =7"()(P + NP, 70 () (P + A)’1
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Taking n = 2N here, AQN appears as a product of 2N + 1 terms in parentheses, each in
L2NTH(H) by Lemma Hence, by Holder’s inequality, Aoy is trace-class and therefore
)P+ N1 -7 (ezN)) € LY(H). Thus,

m(e) (P* + &%)~ 1(1—7r9 Ein )

7/(e)(P — i) (1 — 7" (ean) + 7 (ean) ) (P +ie) (1 = 7’ (eun))

() (P —ie) (1= 7"(ean) ) (P + i) (1 = 7(ean)

+7(e) (P — ie) 7 (ean) (P + i) (1 = 7¥(ean)) € L' (H). (135)
This is to say ©%(e)(D* +£2)~' ~ 7(e)(I)* + %) "'n%(e,y). Shifting this property, we get
(D" + &) 2 (e (P 427N
~ () (D 4 )T (ean) (D7 + %) (ean ) (7 4 %) VR

(P* + )" (ean) (P* + %) 71 (en) - -+ (D7 + €)1 (eane).

By identity , the last term on the right equals

' (e)(P +ig) ' ()P —ie) T (ean) (D7 + ) M (esn) - (D7 + %) T (ean2)
+al(e)(P +ie) [P, 7 ()P + &%)l (ean) (7 + ) (esn) (D7 + %) T (enne).

The last term is trace-class because it is a product of N terms in £P(H) for p > N and
one term in L4(H) for ¢ > 2N, by Lemma [9.21} Removing the second 7?(e) once again, by
the ordering property of the local units e, yields

m(e)(P +ie) ' (e) (P —ie) T (ean) (° + %)M (ean) - (B 4 %) T (ean2)
=1’ (e)(P* + %)’ (e)(D* + )M (ean) - (D7 4 %) (ean2)
' (e)(P* + )P, () (P — ie) '’ (ean) (D7 + %) (ea) - (D7 + %)M (ean2)-

The last term is still trace-class, hence
() (P* + 5N ~ a () (P + )T () (D7 + BT (es) - (D7 + 1) T (eane).
This algorithm, applied another (N — 1) times, yields the result:
N
T (e)(P*+ )N ~ (7 (e)(P? + ) 'a0(e)) O
We retain the following consequence.

Corollary 9.31. Tr+(7r9(g) (7 (f), (D + 82)_N]> = 0 for any g € S and any projector
feA.

Proof. This follows from Lemma applied to ©(f) (P 4 €2)~N and its adjoint. O

Now we are finally ready to evaluate the Dixmier traces.

112



Proposition 9.32. For f € S, any Dizmier trace Tr™ of n(f) (I* + £2)~N is independent
of €, and

() (D7 +2)7Y) = 2 [ ) de = st [ f@) a2,

Proof. We will first prove it for f € A.. Choose e a unit for f, that is, ex, f = fx,e = f. By
Lemmata and [9.30, and because L£!(#) lies inside the kernel of the Dixmier trace, we

obtain
() (D7 4+ e2)7Y) = Tt (77 (f) (77 () (D + €2) ' (e)Y).

Lemma [9.30| applied to f = e implies that (We(e)(JDQ + 82)*17T9(e)>N is a positive operator
in £ (H), since it is equal to 7%(e)(JP* + &%)~V plus a term in £'(#H). Thus, [10, Thm. 5.6]

yields (since the limit converges, any Dixmier trace will give the same result):

et (7/(f) (D* +2)7N) =1lim(s — 1) Tr[7"(f) (=" (e) (D* + )77 (e) ]

sl

zqg?@__1yn(w%fy#@@(w2+5%—N%#@g4-ENQ, (136)

where
By = () (2*(e)(P* + &%) 7'x%(e)" — a’(£)n’(e) (* + %)V’ ).

Lemma again shows that Fy € LY(H).
Ns
Now for s > 1, the first term 7/(f )( ) (I 4 %) 'x(e )) of En, is in LY(H). In

effect, using Lemma and since 7%(e)(P* 4 €2)~' € LP(H) for p > N, we get that
70 (e) (D + &%)~ 'n%(e) € LN5(H). This operator being positive, one concludes

Ns

(7"(e)(P* + ) 'x%(e)) € L' (H).

The second term 7(f)x?(e)(D* + £2)~Nox%(e) lies in L'(H) too, because
I (e)(P* + %)~ "n(e) 1 = |(P* + %)V a’ (o) |5 = [|In’(e)(P* + %)~
is finite by Lemma, So Ey, € LY(H) for s > 1, and (136) implies

rt (We(f) (D> + 52)_N> = lim(s — 1) Tr(ﬂe(f)ﬂe(e)(JDQ + 82)_NS7T0(6))

sl
= lim(s — 1) Te(x(f)(P* + %)),

sl

Applying now Lemma [9.29] we obtain

rt (We(f) (p* + 82)7N) = lim(s — 1) Tr(1y~) Tr(Le( A+ 82)7NS)

sl
= 2¥(2m) 2V lim(s = 1) [[ f(@) (12 + )7 dVeda
= m/f(iﬂ) d2N$,
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where the identity
JUef+ &2 Ve = oV G

and I'(Na) ~ 1/Na as « ] 0 have been used. The proposition is proved for f € A..
Finally, take f arbitrary in S, and recall that {ex} is an approximate unit for Ay. Since

f = gx,h for some g, h € S, Corollary implies

T (((f) - <eK* Froe)(D* +e%)7)]

= [Tr* (= (f) — =° eK*f»(zp +2%)7))]

= [ ((°(g) — 7"(exx,9)) 7 (W) (* +3)7Y))
< |l <g>—7r<eK*gg>uooTr 7 (h) (P + )7,

Since ||7%(g) — 7 (ex%,9) [0 < (270)N/2||g — exx,9||2 tends to zero when K increases, the
proof is complete because exx, f*,ex lies in A, and

/[eK*gf*eeK](a:) ANy — /f(a:) d*Nr as K 1 oo. O

Remark 9.33. Similar arquments to those of this section (or a simple comparison argument)

show that for f € S,
Tt (7(f) (1P| + ) N) = Teh (=(fF) (D° + %) 7N).

In conclusion: the analytical and spectral dimension of Moyal planes coincide. And
Lemma [9.28] Proposition and the previous remark have concluded the proof of Theo-
rem

The conclusion is that (A, AN, D, x,J) defines a non-compact spectral triple; recall that
we already know that both A and its preferred compactification A are pre-C*-algebras.

Theorem 9.34. The Moyal planes (A, A, H, 1D, J, x) are connected real non-compact spectral
triples of spectral dimension 2N .

One can compute the Yang—Mills action of this triple:

Theorem 9.35. Letw = —w* € Q' Ay. Then the Yang—Mills action Y M (V') of the universal
connection & + w, with V = 7%(w), is equal to

SYM — /F;ux dZN /F/,LV d2N
where F,, = 3(9,A, — 0,A, + [A,, Al,) and A, is defined by V = LY(A,) @ +*.
The spectral action has been computed in [41,42]. As one can expected, it is the same,

up to few universal coefficients, to the one of Theorem [8.13]
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